Section 2.5: Continuity

Problem 1. Evaluate the limit.

$$
\lim _{x \rightarrow 0} \mathrm{e}^{\frac{\sqrt{1-x}-1}{x}}
$$

HINT: Use the theorem below that we learned in class.

Theorem 2. If f is continuous at b and $\lim _{x \rightarrow a} g(x)=b$ then

$$
\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)=f(b)
$$

Let function in the limit is the composition of the functions $f(x)=e^{x}$ and $g(x)=\frac{\sqrt{1-x}-1}{x}$. That is, $\mathrm{e}^{\frac{\sqrt{1-x}-1}{x}}=f(g(x))$. Let us determine $\lim _{x \rightarrow 0} g(x)$. We have

$$
\begin{aligned}
\lim _{x \rightarrow 0} g(x)=\lim _{x \rightarrow 0} \frac{\sqrt{1-x}-1}{x} & =\lim _{x \rightarrow 0} \frac{\sqrt{1-x}-1}{x} \cdot \frac{\sqrt{1-x}+1}{\sqrt{1-x}+1} \\
& =\lim _{x \rightarrow 0} \frac{(1-x)-1}{x(\sqrt{1-x}+1)} \\
& =\lim _{x \rightarrow 0} \frac{-x}{x(\sqrt{1-x}+1)} \\
& =\lim _{x \rightarrow 0} \frac{-1}{\sqrt{1-x}+1} \\
& =\frac{-1}{\sqrt{1-0}+1} \\
& =-\frac{1}{2}
\end{aligned}
$$

Since $f(x)=e^{x}$ is continuous on its domain, $\mathbb{R}=(-\infty, \infty)$, then by Theorem 2,

$$
\lim _{x \rightarrow 0} \mathrm{e}^{\frac{\sqrt{1-x}-1}{x}}=\mathrm{e}^{\lim _{x \rightarrow 0} \frac{\sqrt{1-x}-1}{x}}=e^{-1 / 2}
$$

Problem 2. Sketch the graph of a function that satisfies the following

$$
\text { Jump discontinuity at }-3 \text {, }
$$

Removable discontinuity at 4,
Continuous from the left at -3 ,
Value of the function at $x=4$ is 2 , Continuous everywhere except at -3 and 4

Problem 3. Let

$$
f(x)= \begin{cases}x^{2}+1 & \text { if } x \leq 0 \\ 1 & \text { if } 0<x<2 \\ \frac{x^{2}-9}{x-3} & \text { if } x \geq 2\end{cases}
$$

(a) Find the discontinuities of f and state the type of discontinuity.
(b) Determine whether f is continuous from the left, continuous from the right, or neither at each of the discontinuities you stated in part (a).
(a) We will determine continuity at the following places: $(-\infty, 0), x=0,(0,2), x=2,(2, \infty)$.

On the interval $(-\infty, 0)$, the function $f(x)=x^{2}+1$, which is a polynomial. Since polynomials are continuous on \mathbb{R}, f is continuous on $(-\infty, 0)$.

Let us determine the continuity of f at 0 . We have $f(0)=0^{2}+1=1$. Checking left and right limits, we have

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} x^{2}+1=0^{2}+1=1
$$

and

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} 1=1
$$

Therefore, $\lim _{x \rightarrow 0} f(x)=1=f(0)$, so f is continuous at 1 .

On the interval $(0,2)$, the function $f(x)=1$, which is a polynomial (constant functions are polynomials). Since polynomials are continuous on \mathbb{R}, f is continuous on $(0,2)$.

Let us determine the continuity of f at 2 . We have $f(2)=\frac{2^{2}-9}{2-3}=5$. Checking left and right limits, we have

$$
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} 1=1,
$$

and

$$
\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} \frac{x^{2}-9}{x-3}=\lim _{x \rightarrow 2^{+}} \frac{(x-3)(x+3)}{x-3}=\lim _{x \rightarrow 2^{+}} x+3=2+3=5 .
$$

Since the left and right limits are not equal, \mathbf{f} has a jump discontinuity at 2 .
On the interval $(2, \infty)$, the function $f(x)=\frac{x^{2}-9}{x-3}$, which is continuous on its domain, $\{x \mid x \neq 3\}$. Since 3 is in the interval $(2, \infty), f$ has a discontinuity at 3 . Since

$$
\lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}=\lim _{x \rightarrow 3} \frac{(x-3)(x+3)}{x-3}=\lim _{x \rightarrow 3} x+3=3+3=6
$$

then f has a removable discontinuity at 3 .
(b) In part (a), we showed that

$$
\lim _{x \rightarrow 2^{+}} f(x)=5=f(2)
$$

Therefore, f is continuous from the right at 2 .
Since $f(3)$ does not exist, \mathbf{f} is neither continuous from the right or the left at 3 .
Problem 4. Use the Intermediate Value Theorem (IVT) to show that the equation $\ln (x)=x-\sqrt{x}$ has a solution within the interval $(2,3)$.
HINT: Let $f(x)=\ln (x)-x+\sqrt{x}$ and determine the signs of $f(2)$ and $f(3)$. Apply the same approach as we did in class for a similar problem. Please justify your steps in order to apply the IVT.

Intermediate Value Theorem. (IVT) Suppose that f is continuous on the closed interval $[a, b]$ and let N be any number between $f(a)$ and $f(b)$. Then there exists a number c in (a, b) such that $f(c)=N$.

Using the given hint, we let $f(x)=\ln (x)-x+\sqrt{x}$. Notice that the function is the sum of three functions, each of which is continuous on their domain. Since $\operatorname{dom}(f)=(0, \infty)$, then f is continuous on $(0, \infty)$, and therefore in continuous on $(2,3)$. Since

$$
f(2)=\ln (2)-2+\sqrt{2} \approx 0.107>0 \quad \text { and } \quad f(3)=\ln (3)-3+\sqrt{3} \approx-0.169<0
$$

then 0 is an intermediate value between $f(2)$ and $f(3)$. Since f is continuous on $(2,3)$, by the IVT, we know that there is an x-value c in $(2,3)$ such that $f(c)=0$. That is, there is a value c, such that $\ln (c)-c+\sqrt{c}=0$, which is equivalent to stating that the equation $\ln (x)=x-\sqrt{x}$ has a solution within the interval $(2,3)$.

