Section 2.2: The Limit of a Function

Problem 1. Determine the limits below.
(a) $\lim _{x \rightarrow 1^{+}} \ln (\sqrt{x}-1)$
(b) $\lim _{x \rightarrow 0^{+}} \ln (\sin (x))$

HINT: Remember, $f(x)=\ln (x)$ has a vertical asymptote at $x=0$, since as $x \rightarrow 0^{+}, \ln (x) \rightarrow-\infty$.

Problem 2. Find the vertical asymptotes of the functions below. Explain the behavior of the function on either side of the vertical aymptote (e.g., if $x=a$ is a v.a., explain whether the function goes to ∞ or $-\infty$ as $x \rightarrow$ a.)

$$
f(x)=\frac{x^{2}+1}{3 x-2 x^{2}}
$$

Section 2.3: Calculating Limits Using Limit Laws

Problem 3. Evaluate each of the following limits if they exist.
(a) $\lim _{h \rightarrow 0} \frac{(h-2)^{-1}+2^{-1}}{h}$,
(b) $\lim _{t \rightarrow 0} \frac{1}{t \sqrt{1+t}}-\frac{1}{t}$
(c) $\lim _{x \rightarrow-2} \frac{2-|x|}{2+x}$.

HINTS: (a) Express each term in the numerator as a fraction and then combine them into a single fraction by finding their least common denominator.
(b) Combine the fractions into a single fraction, then rationalize the numerator.
(c) When x is very close to $-2, x$ is negative.

Problem 4. Use the Squeeze Theorem to show that $\lim _{x \rightarrow 0^{+}} \sqrt{x} e^{\sin (\pi / x)}=0$.

