MAT 1500 (Dr. Fuentes)

Section 2.2: The Limit of a Function

Problem 1. Determine the limits below. (a) $\lim_{x \to 1^+} \ln(\sqrt{x} - 1)$ (b) $\lim_{x \to 0^+} \ln(\sin(x))$ **HINT:** Remember, $f(x) = \ln(x)$ has a vertical asymptote at x = 0, since as $x \to 0^+$, $\ln(x) \to -\infty$.

Problem 2. Find the vertical asymptotes of the functions below. Explain the behavior of the function on either side of the vertical asymptote (e.g., if x = a is a v.a., explain whether the function goes to ∞ or $-\infty$ as $x \to a$.)

$$f(x) = \frac{x^2 + 1}{3x - 2x^2}$$

Section 2.3: Calculating Limits Using Limit Laws

Problem 3. Evaluate each of the following limits if they exist.

(a) $\lim_{h \to 0} \frac{(h-2)^{-1} + 2^{-1}}{h}$, (b) $\lim_{t \to 0} \frac{1}{t\sqrt{1+t}} - \frac{1}{t}$ (c) $\lim_{x \to -2} \frac{2-|x|}{2+x}$.

HINTS: (a) Express each term in the numerator as a fraction and then combine them into a single fraction by finding their least common denominator.

(b) Combine the fractions into a single fraction, then rationalize the numerator.

(c) When *x* is very close to -2, *x* is negative.

Problem 4. Use the Squeeze Theorem to show that $\lim_{x\to 0^+} \sqrt{x} e^{\sin(\pi/x)} = 0.$