Section 2.2: The Limit of a Function

Problem 1. Determine the limits below.
(a) $\lim _{x \rightarrow 1^{+}} \ln (\sqrt{x}-1)$
(b) $\lim _{x \rightarrow 0^{+}} \ln (\sin (x))$

HINT: Remember, $f(x)=\ln (x)$ has a vertical asymptote at $x=0$, since as $x \rightarrow 0^{+}, \ln (x) \rightarrow-\infty$.
(a) As $x \rightarrow 1^{+}, \sqrt{x}-1 \rightarrow 0^{+}$. Then $\ln (\sqrt{x}-1) \rightarrow-\infty$. That is, $\lim _{x \rightarrow 1^{+}} \ln (\sqrt{x}-1)=-\infty$
(b) As $x \rightarrow 0^{+}, \sin (x) \rightarrow 0^{+}$. Then $\ln (\sqrt{x}-1) \rightarrow-\infty$. That is, $\lim _{x \rightarrow 0^{+}} \ln (\sin (x))=-\infty$.

Problem 2. Find the vertical asymptotes of the function below. Explain the behavior of the function on either side of the vertical aymptote (e.g., if $x=a$ is a v.a., explain whether the function goes to ∞ or $-\infty$ as $x \rightarrow a$.) Verify your answers by plotting the function in Maple.

$$
f(x)=\frac{x^{2}+1}{3 x-2 x^{2}}
$$

Since

$$
\frac{x^{2}+1}{3 x-2 x^{2}}=\frac{x^{2}+1}{x(3-2 x)^{\prime}}
$$

we see that the denominator $x(3-2 x)=0$ when $x=0$ and when $x=3 / 2$. Note that

$$
f(0)=\frac{0^{2}+1}{0(3-2(0)}=\frac{1}{0} \quad \text { and } \quad f(3 / 2)=\frac{(3 / 2)^{2}+1}{(3 / 2)(3-2(3 / 2))}=\frac{13 / 4}{0}
$$

which idicates that both $x=0$ and $x=3 / 2$ are vertical asymptotes of f.
Let us determine the behavior of the function on either side of these asymptotes. As $x \rightarrow 0^{+}$,
$x(3-2 x) \rightarrow 0^{-}$, since $x>0$ and $3-2 x>0$ by taking x sufficiently close to 0 . Since the numerator $x^{2}+1 \rightarrow 1$, then

$$
\lim _{x \rightarrow 0^{+}} \frac{x^{2}+1}{3 x-2 x^{2}}=\infty
$$

As $x \rightarrow 0^{-}, x(3-2 x) \rightarrow 0^{+}$, since $x<0$ and $3-2 x>0$. Since the numerator $x^{2}+1 \rightarrow 1$, then

$$
\lim _{x \rightarrow 0^{-}} \frac{x^{2}+1}{3 x-2 x^{2}}=-\infty
$$

As $x \rightarrow(3 / 2)^{+}, x(3-2 x) \rightarrow 0^{-}$, since $x>0$ and $3-2 x<0$. Since the numerator $x^{2}+1 \rightarrow 13 / 4$, then

$$
\lim _{x \rightarrow(3 / 2)^{+}} \frac{x^{2}+1}{3 x-2 x^{2}}=-\infty
$$

As $x \rightarrow(3 / 2)^{-}, x(3-2 x) \rightarrow 0^{+}$, since $x>0$ and $3-2 x<0$, by taking x sufficiently close to $3 / 2$. Since the numerator $x^{2}+1 \rightarrow 13 / 4$, then

$$
\lim _{x \rightarrow(3 / 2)^{-}} \frac{x^{2}+1}{3 x-2 x^{2}}=\infty .
$$

Section 2.3: Calculating Limits Using Limit Laws

Problem 3. Evaluate each of the following limits if they exist.
(a) $\lim _{h \rightarrow 0} \frac{(h-2)^{-1}+2^{-1}}{h}$,
(b) $\lim _{t \rightarrow 0} \frac{1}{t \sqrt{1+t}}-\frac{1}{t}$
(c) $\lim _{x \rightarrow-2} \frac{2-|x|}{2+x}$.

HINTS: (a) Express each term in the numerator as a fraction and then combine them into a single fraction by finding their least common denominator.
(b) Combine the fractions into a single fraction, then rationalize the numerator.
(c) When x is very close to $-2, x$ is negative.

$$
\text { (a) } \begin{aligned}
\lim _{h \rightarrow 0} \frac{(h-2)^{-1}+2^{-1}}{h} & =\lim _{h \rightarrow 0} \frac{\frac{1}{h-2}+\frac{1}{2}}{h}=\lim _{h \rightarrow 0} \frac{\frac{2+(h-2)}{2(h-2)}}{h}=\lim _{h \rightarrow 0} \frac{2+(h-2)}{2 h(h-2)} \\
& =\lim _{h \rightarrow 0} \frac{h}{2 h(h-2)}=\lim _{h \rightarrow 0} \frac{1}{2(h-2)}=\frac{1}{2(0-2)}=-\frac{1}{4}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\lim _{t \rightarrow 0}\left(\frac{1}{t \sqrt{1+t}}-\frac{1}{t}\right) & =\lim _{t \rightarrow 0} \frac{1-\sqrt{1+t}}{t \sqrt{1+t}}=\lim _{t \rightarrow 0} \frac{(1-\sqrt{1+t})(1+\sqrt{1+t})}{t \sqrt{t+1}(1+\sqrt{1+t})}=\lim _{t \rightarrow 0} \frac{-t}{t \sqrt{1+t}(1+\sqrt{1+t})} \\
& =\lim _{t \rightarrow 0} \frac{-1}{\sqrt{1+t}(1+\sqrt{1+t})}=\frac{-1}{\sqrt{1+0}(1+\sqrt{1+0})}=-\frac{1}{2}
\end{aligned}
$$

(c) Since x is approaching -2 , we can assume that $\mathrm{x}<0$ by assuming x is very close to -2 .

Since $|x|=-x$ for $x<0$, we have

$$
\lim _{x \rightarrow-2} \frac{2-|x|}{2+x}=\lim _{x \rightarrow-2} \frac{2-(-x)}{2+x}=\lim _{x \rightarrow-2} \frac{2+x}{2+x}=\lim _{x \rightarrow-2} 1=1
$$

Problem 4. Use the Squeeze Theorem to show that $\lim _{x \rightarrow 0^{+}} \sqrt{x} e^{\sin (\pi / x)}=0$.

For any x-value, we know that

$$
-1 \leq \sin \left(\frac{\pi}{x}\right) \leq 1
$$

Then

$$
e^{-1} \leq e^{\sin (\pi / x)} \leq e^{1}
$$

Since $\sqrt{x} \geq 0$ (the square root of a number is always nonnegative), then

$$
\sqrt{x} e^{-1} \leq \sqrt{x} e^{\sin (\pi / x)} \leq \sqrt{x} e .
$$

Notice that

$$
\lim _{x \rightarrow 0^{+}} \sqrt{x} e^{-1}=e^{-1} \lim _{x \rightarrow 0^{+}} \sqrt{x}=e^{-1}(0)=0,
$$

and similarly,

$$
\lim _{x \rightarrow 0^{+}} \sqrt{x} e=0
$$

Then by the Squeeze Theorem, we also have

$$
\lim _{x \rightarrow 0^{+}} \sqrt{x} e^{\sin (\pi / x)}=0
$$

