MAT 1500 (Dr. Fuentes) Worksheet 2 (PART 2) - Sections 2.2 & 2.3

Section 2.2;: The Limit of a Function

Problem 1. Determine the limits below.

(@) lim In(yv/x—1) (b) lim In(sin(x))

x—1+ x—0*t

HINT: Remember, f(x) = In(x) has a vertical asymptote at x = 0, since as x — 07, In(x) — —oo.

(@ Asx — 1%, /x—1— 0. ThenIn(y/x — 1) — —oo. Thatis, lim In(y/x —1) = —c0

x—1+t

(b) Asx — 0", sin(x) — 0". Then In(y/x — 1) — —oo. Thatis, lim In(sin(x)) = —co.

x—0t

Problem 2. Find the vertical asymptotes of the function below. Explain the behavior of the function on
either side of the vertical aymptote (e.g., if x = a is a v.a., explain whether the function goes to co or
—oo0 as x — a.) Verify your answers by plotting the function in Maple.
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we see that the denominator x(3 — 2x) = 0 when x = 0 and when x = 3/2. Note that
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which idicates that both x = 0 and x = 3/2 are vertical asymptotes of f.

Let us determine the behavior of the function on either side of these asymptotes. As x — o+,
x(83—2x) — 07, since x > 0 and 3 — 2x > 0 by taking x sufficiently close to 0. Since the numerator
x24+1— 1, then
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Asx — 07, x(3 —2x) — 0%, since x < 0 and 3 — 2x > 0. Since the numerator x> + 1 — 1, then
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Asx — (3/2)", x(3 —2x) — 07, since x > 0 and 3 — 2x < 0. Since the numerator x> + 1 — 13/4, then

lim x+1 00
i —— = —o0.
x—(3/2)+ 3x — 2x2

Asx — (3/2)7,x(3 —2x) — 07, since x > 0 and 3 — 2x < 0, by taking x sufficiently close to 3/2. Since

the numerator x2 + 1 — 13/4, then
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Section 2.3: Calculating Limits Using Limit Laws

Problem 3. Evaluate each of the following limits if they exist.
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HINTS: (a) Express each term in the numerator as a fraction and then combine them into a single
fraction by finding their least common denominator.
(b) Combine the fractions into a single fraction, then rationalize the numerator.

(c) When x is very close to —2, x is negative.
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(¢) Since X is approaching -2, we can assume that x < 0 by assuming X is very close to -2.
Since |z| = —x for z < 0, we have
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Problem 4. Use the Squeeze Theorem to show that lim +/x es"(™/*) =,

x—0t

For any x-value, we know that
—1<sin (E) <1.
X

Then
6_1 < esin(n/x) < el_

Since \/x > 0 (the square root of a number is always nonnegative), then

Vxe b < /xesTY) < /xe.

Notice that
lim vxe ' =e7! lim /x =¢ 1(0) =0,

x—0F x—0+

and similarly,
lim +/xe = 0.

x—0t

Then by the Squeeze Theorem, we also have

lim /xesn(7/%) =0

x—0t



