The Product Rule can be applied the the product of three of more functions as well. For example, if $F(x)=f(x) \cdot g(x) \cdot h(x)=f(x)(g(x) \cdot h(x))$ then by the Product Rule,

$$
\begin{aligned}
F^{\prime}(x) & =\left(\frac{d}{d x} f(x)\right) g(x) \cdot h(x)+f(x)\left(\frac{d}{d x}(g(x) \cdot h(x))\right) \\
& =\left(\frac{d}{d x} f(x)\right) g(x) \cdot h(x)+f(x)\left(\left(\frac{d}{d x} g(x)\right) h(x)+g(x)\left(\frac{d}{d x} h(x)\right)\right) \\
& =\left(\frac{d}{d x} f(x)\right) g(x) \cdot h(x)+f(x)\left(\frac{d}{d x} g(x)\right) h(x)+f(x) \cdot g(x)\left(\frac{d}{d x} h(x)\right) .
\end{aligned}
$$

That is,

$$
\frac{d}{d x}(f(x) \cdot g(x) \cdot h(x))=f^{\prime}(x) \cdot g(x) \cdot h(x)+f(x) \cdot g^{\prime}(x) \cdot h(x)+f(x) \cdot g(x) \cdot h^{\prime}(x)
$$

Section 3.3: Derivatives of Trigonometric Functions

Problem 1. Differentiate.
(a) $y=\frac{t \sin (t)}{1+t}$
(b) $f(\theta)=\theta \cdot \cos (\theta) \cdot \sin (\theta)$

HINT: Use the Product Rule for three functions (shown above) in part (b).
(a)

$$
\begin{aligned}
y^{\prime} & =\frac{(t \cos t+\sin t)(1+t)-(1) t \sin t}{(1+t)^{2}} \\
& =\frac{t \cos t+\sin t+t^{2} \cos t+t \sin t-t \sin t}{(1+t)^{2}}=\frac{\left(t^{2}+t\right) \cos t+\sin t}{(1+t)^{2}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
f^{\prime}(\theta) & =1 \cos \theta \sin \theta+\theta(-\sin \theta) \sin \theta+\theta \cos \theta(\cos \theta) \\
& =\cos \theta \sin \theta-\theta \sin ^{2} \theta+\theta \cos ^{2} \theta
\end{aligned}
$$

Problem 2. Find the x-values at which the tangent line is horizontal to the given curve when x satisfies $\pi \leq x \leq 3 \pi / 2$.

$$
y=\frac{\cos (x)}{2+\sin (x)}
$$

HINT: Use the trigonometric Pythagorean identity $\cos ^{2}(x)+\sin ^{2}(x)=1$ to simplify the derivative and think about the Unit Circle.

We will find the derivative of y and set it equal to zero to determine the x-values at which the tangent line is horizontal. We have

$$
y^{\prime}=\frac{(-\sin (x))(2+\sin (x))-\cos (x) \cdot \cos (x)}{(2+\sin (x))^{2}}=\frac{-2 \sin (x)-\left(\sin ^{2}(x)+\cos ^{2}(x)\right)}{(2+\sin (x))^{2}}=\frac{-2 \sin (x)-1}{(2+\sin (x))^{2}}
$$

Solving for $y^{\prime}=0$, we have

$$
\frac{-2 \sin (x)-1}{(2+\sin (x))^{2}}=0 \quad \Rightarrow \quad-2 \sin (x)-1=0 \quad \Rightarrow \quad \sin (x)=-\frac{1}{2}
$$

Since $\pi \leq x \leq 3 \pi / 2$, the equation $\sin (x)=-1 / 2$ is satisfied when $x=7 \pi / 6$ radians (or equivalently, 210°).

Section 3.4: The Chain Rule

Problem 3. Differentiate.

(a) $H(r)=\frac{\left(r^{2}-1\right)^{3}}{(2 r+1)^{5}}$
(b) $F(t)=e^{t \sin (2 t)}$
(c) $f(t)=\tan (\sec (\cos (t)))$
(a)

$$
\begin{aligned}
H^{\prime}(r) & =\frac{3\left(r^{2}-1\right)^{2}(2 r) \cdot(2 r+1)^{5}-\left(r^{2}-1\right)^{3} \cdot 5(2 r+1)^{4}(2)}{\left[(2 r+1)^{5}\right]^{2}}=\frac{2(2 r+1)^{4}\left(r^{2}-1\right)^{2}\left[3 r(2 r+1)-5\left(r^{2}-1\right)\right]}{(2 r+1)^{10}} \\
& =\frac{2\left(r^{2}-1\right)^{2}\left(6 r^{2}+3 r-5 r^{2}+5\right)}{(2 r+1)^{6}}=\frac{2\left(r^{2}-1\right)^{2}\left(r^{2}+3 r+5\right)}{(2 r+1)^{6}}
\end{aligned}
$$

(b)

$$
F^{\prime}(t)=e^{t \sin (2 t)} \frac{d}{d t}(t \sin (2 t))=e^{t \sin (2 t)}(\sin (2 t)+2 t \cos (2 t))
$$

(c)

$$
\begin{aligned}
f^{\prime}(t)=\sec ^{2}(\sec (\cos (t))) \frac{d}{d t}(\sec (\cos (t))) & =\sec ^{2}(\sec (\cos (t))) \sec (\cos (t)) \tan (\cos (t)) \frac{d}{d t}(\cos (t)) \\
& =\sec ^{2}(\sec (\cos (t))) \sec (\cos (t)) \tan (\cos (t))(-\sin (t))
\end{aligned}
$$

Problem 4. Find the points at which the tangent line to the curve $y=\sqrt{1-x^{2}}$ is perpendicular to the line $x+y=1$.

We have

$$
\frac{d y}{d x}=\frac{1}{2}\left(1-x^{2}\right)^{-1 / 2}(-2 x)=\frac{-x}{\left(1-x^{2}\right)^{1 / 2}} .
$$

The line $x+y=1$ can be rewritten as $y=-x+1$ in slope-intercept form, allowing us to see that its slope is -1 . Then we set the derivative equal to 1 to determine the x-values at which a tangent line to the curve is perpendicular to $x+y=1$. We have

$$
\frac{-x}{\left(1-x^{2}\right)^{1 / 2}}=1 \Rightarrow-x=\left(1-x^{2}\right)^{1 / 2} \Rightarrow x^{2}=1-x^{2} \Rightarrow 2 x^{2}=1 \Rightarrow x^{2}=\frac{1}{2} \Rightarrow x= \pm \frac{1}{\sqrt{2}}
$$

By plugging in $x= \pm \frac{1}{\sqrt{2}}$ into y we have

$$
y=\sqrt{1-\left(\pm \frac{1}{\sqrt{2}}\right)^{2}}=\sqrt{1-\frac{1}{2}}=\frac{1}{\sqrt{2}} .
$$

Then the points at which the tangent line to the curve $y=\sqrt{1-x^{2}}$ is perpendicular to the line $x+y=1$ are $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ and $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.

