MAT 1500 (Dr. Fuentes) Worksheet 6 - Sections 3.3 & 3.4

The Product Rule can be applied the the product of three of more functions as well. For
example, if F(x) = f(x) - g(x) - h(x) = f(x) (g(x) - h(x)) then by the Product Rule,
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That is,

%(f(X) -8(x) - h(x)) = f'(x) - g(x) - h(x) + f(x) - g'(x) - 1(x) + f(x) - g (x) - W' (x).

Section 3.3: Derivatives of Trigonometric Functions

Problem 1. Differentiate.

t sin(t)
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HINT: Use the Product Rule for three functions (shown above) in part (b).

@ y= (b) £(6) =6-cos(8) -sin(9)
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(b)
f'(0)=1cosB sinf + 8(—sinf) sin @ + O cosB(cos )

= cosf sinf — @sin’6 + 6 cos>6

Problem 2. Find the x-values at which the tangent line is horizontal to the given curve when x satisfies
m<x<3m/2.

_ cos(x)
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HINT: Use the trigonometric Pythagorean identity cos?(x) + sin?(x) = 1 to simplify the derivative
and think about the Unit Circle.

We will find the derivative of y and set it equal to zero to determine the x-values at which the tangent
line is horizontal. We have

, _ (—sin(x))(2+sin(x)) — cos(x) - cos(x)  —2sin(x) — (sin®(x) + cos?(x))  —2sin(x) —1
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Solving for y’ = 0, we have

—2si -1 1
sin(x) =0 = 2sin(x)-1=0 = sin(x)=—=

(2 +sin(x))? 2
Since 71 < x < 371/2, the equation sin(x) = —1/2 is satisfied when x = 77t/6 radians (or equivalently,
210°).
Section 3.4: The Chain Rule
Problem 3. Differentiate.
@ Hp =T (0) F(t) = efsnC © £(t) = tan(sec(cos(1)))
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F(t) = etSi“(Zt)E(tsin(Zt)) = ') (sin(2t) + 2t cos(2t))

(c)

f'(t) = sec” (sec(cos(t))) (i(sec(cos(t))) = sec? (sec(cos(t))) sec(cos(t)) tan(cos(t))i(cos(t))
= sec? (sec(cos(t))) sec(cos(t)) tan(cos(t))(— sin(t))

Problem 4. Find the points at which the tangent line to the curve y = v/1 — x2 is perpendicular to the
linex +y = 1.
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The line x + y = 1 can be rewritten as y = —x + 1 in slope-intercept form, allowing us to see that its

slope is —1. Then we set the derivative equal to 1 to determine the x-values at which a tangent line to
the curve is perpendicular to x + y = 1. We have
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By plugging in x = £ 7

into y we have

Then the points at which the tangent line to the curve y = v/1 — x? is perpendicular to the linex +y =1
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