Problem 1. Consider the function

$$
f(x)=\frac{2 x^{2}}{x^{2}-1}
$$

(a) Find the domain of f.
(b) Find the x and y-intercepts of f.
(c) Find the vertical and the horizontal asymptotes of f.
(d) Find the intervals over which f is increasing and the intervals over which f is decreasing. Use the domain and the critical numbers of f to help you find which intervals to consider.
$f^{\prime}(x)=\frac{-4 x}{\left(x^{2}-1\right)^{2}}$
(e) Find the points at which f has a local maximum or a local minimum.
(f) Find the inflection points of f (not just the x-values, but the y-coordinates as well). $f^{\prime \prime}(x)=\frac{4\left(3 x^{2}+1\right)}{\left(x^{2}-1\right)^{3}}$
(g) Find the intervals over which f is concave up and the intervals over which f is concave down.
(h) Use all of the information from the previous parts to sketch a graph of f. Please label the intercepts, the horizontal asymptote, the local max/min points, and the inflection points on your graph.

Problem 2. Consider the function

$$
f(x)=\frac{x^{2}}{\sqrt{x+1}}
$$

(a) Find the domain of f.
(b) Find the x and y-intercepts of f.
(c) Find the vertical and the horizontal asymptotes of f.
(d) Find the intervals over which f is increasing and the intervals over which f is decreasing. Use the domain and the critical numbers of f to help you find which intervals to consider.
$f^{\prime}(x)=\frac{x(3 x+4)}{2(x+1)^{3 / 2}}$
(e) Find the points at which f has a local maximum or a local minimum.
(f) Find the inflection points of f (not just the x-values, but the y-coordinates as well). $f^{\prime \prime}(x)=\frac{3 x^{2}+8 x+8}{4(x+1)^{5 / 2}}$
(g) Find the intervals over which f is concave up and the intervals over which f is concave down.
(h) Use all of the information from the previous parts to sketch a graph of f. Please label the intercepts, the horizontal asymptote, the local max/min points, and the inflection points on your graph.

Problem 3. Consider the function

$$
f(x)=\ln \left(4-x^{2}\right)
$$

(a) Find the domain of f.
(b) Find the x and y-intercepts of f.
(c) Find the vertical and the horizontal asymptotes of f.
(d) Find the intervals over which f is increasing and the intervals over which f is decreasing. Use the domain and the critical numbers of f to help you find which intervals to consider.
$f^{\prime}(x)=\frac{-2 x}{4-x^{2}}$
(e) Find the points at which f has a local maximum or a local minimum.
(f) Find the inflection points of f (not just the x-values, but the y-coordinates as well). $f^{\prime \prime}(x)=\frac{-2\left(4+x^{2}\right)}{\left(4-x^{2}\right)^{2}}$
(g) Find the intervals over which f is concave up and the intervals over which f is concave down.
(h) Use all of the information from the previous parts to sketch a graph of f. Please label the intercepts, the horizontal asymptote, the local max/min points, and the inflection points on your graph.

