Section 4.1: Maximum and Minimum Values

Problem 1.

- (a) Sketch the graph of a function that has a local maximum at 2 and is continuous, but not differentiable at 2.
- (b) Sketch the graph of a function that has a local maximum at 2 and is not continuous at 2.
- (c) Sketch the graph of a function on [0,4] that has an absolute maximum, no local maximum, and no absolute minimum.

Problem 2. Find the absolute maximum and the absolute minimum values of the function

$$f(\theta) = 1 + \cos^2(\theta)$$

in the interval $[\pi/4, \pi]$.

Section 4.2: The Mean Value Theorem

Problem 3.

- (a) Verify that the function f(x) = 1/x satisfies the hypotheses of the Mean Value Theorem on the interval [1,3].
- (b) Find all numbers c that satisfy the conclusion of the Mean Value Theorem.

Problem 4. Determine whether the statements below are true or false. If the statement is true, explain why; otherwise, explain why or give an example that disproves the statement.

- (a) If f is differentiable everywhere and f(-1) = f(1), then there is a number c such that |c| < 1 and f'(c) = 0.
- (b) If a function g satisfies $3 \le g'(x) \le 5$ for all values of x, then $18 \le f(8) f(2) \le 30$.