Section 3.9: Related Rates

Problem 1. A ladder 10 feet long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of 4 feet per second, how fast is the angle between the ladder and the ground changing when the bottom of the ladder is 6 feet from the wall?

Problem 2. Air is being pumped into a spherical balloon so that its volume increases at a rate of 100 $\mathrm{cm}^{3} / \mathrm{s}$. How fast is the radius of the baloon increasing when the diameter is 50 cm ?

Problem 3. A paper cup has the shape of a cone with height 10 cm and radius 3 cm (at the top). If water is poured into the cup at a rate of $2 \mathrm{~cm}^{3} / \mathrm{s}$, how fast is the water level rising when the water is 5 cm deep?

Problem 4. Each side of a square is increasing at a rate of $6 \mathrm{~cm} / \mathrm{s}$. At what rate is the area of the square increasing when the area of the square is $16 \mathrm{~cm}^{2}$?

Problem 5. A street light is mounted at the top of a 15 -feet-tall pole. A man 6 feet tall walks away from the pole with a speed of 5 feet per second along a straight path. How fast is the tip of his shadow moving when he is 40 feet from the pole?

Section 4.1: Maximum \& Minimum Values

Problem 6.

(a) Sketch the graph of a function that has a local maximum at 2 and is continuous, but not differentiable at 2.
(b) Sketch the graph of a function that has a local maximum at 2 and is not continuous at 2 .
(c) Sketch the graph of a function on $[0,4]$ that has an absolute maximum, no local maximum, and no absolute minimum.

Problem 7. Find the critical numbers of the function.
(a) $f(x)=\frac{x^{2}+2}{2 x-1}$
(b) $F(x)=x^{4 / 5}(x-4)^{2}$
(c) $g(x)=x e^{x}$

Problem 8. Find the absolute maximum and the absolute minimum value(s) of the function

$$
f(\theta)=1+\cos ^{2}(\theta)
$$

in the interval $[\pi / 4, \pi]$.

