Section 11.1: Sequences

Problem 1. List the first four terms of the sequence.

Note: The definition of $n! = n(n-1)(n-2)(n-3)\cdots 2\cdot 1$. For example, $4! = 4\cdot 3\cdot 2\cdot 1 = 24$. We call n!, "n factorial."

(a)
$$a_n = \frac{2n+1}{n!+1}$$

(a)
$$a_n = \frac{2n+1}{n!+1}$$
, (b) $a_1 = 2$, $a_{n+1} = \frac{a_n}{1+a_n}$

Problem 2. Find a formula for the general term a_n of the sequence, assuming that the pattern of the first few terms continues.

 $\{a_n\}_{n=0}^{\infty} = \left\{-3, 2, -\frac{4}{3}, -\frac{8}{9}, -\frac{16}{27}, \dots\right\}.$ **Note:** The sequence begins with a_0 .

Problem 3. Determine whether the sequence converges or diverges. If it converges, find the limit.

(a)
$$a_n = \frac{3\sqrt{n}}{\sqrt{n}+2}$$

(a)
$$a_n = \frac{3\sqrt{n}}{\sqrt{n}+2}$$
, (b) $a_n = \cos\left(\frac{n\pi}{n+1}\right)$, (c) $a_n = \frac{(2n-1)!}{(2n+1)!}$, (d) $a_n = \frac{\ln(n)}{\ln(2n)}$.

(c)
$$a_n = \frac{(2n-1)!}{(2n+1)!}$$

(d)
$$a_n = \frac{\ln(n)}{\ln(2n)}$$