Section 2.8: The Derivative as a Function

Problem 1.

(a) Show that $f(x)=x^{2 / 3}$ is not differentiable at $x=0$.
(b) Determine where the function $g(x)=x+|x|$ is not differentiable. Draw the graphs of g and g^{\prime}.
(a) We have

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{(0+h)^{2 / 3}-0^{2 / 3}}{h}=\lim _{h \rightarrow 0} \frac{h^{2 / 3}}{h}=\lim _{h \rightarrow 0} \frac{1}{h^{1 / 3}}
$$

As $h \rightarrow 0^{+}$, we see that $\frac{1}{h^{1 / 3}} \rightarrow \infty$ and as $h \rightarrow 0^{-}$, we see that $\frac{1}{h^{1 / 3}} \rightarrow-\infty$. Therefore, the limit above does not exist. That is, $f^{\prime}(0)$ does not exist, which means that f is not differentiable at $x=0$.
(b) We can express the function g as a piecewise function as follows:

$$
g(x)=\left\{\begin{array}{ll}
x+x & \text { if } x \geq 0 \\
x-x & \text { if } x<0
\end{array}= \begin{cases}2 x & \text { if } x \geq 0 \\
0 & \text { if } x<0\end{cases}\right.
$$

The graph of g looks like

The curve of g appears to be differentiable everywhere except at $x=0$, where we see a corner. Therefore, $g^{\prime}(0)$ does not exist; that is, g is not differentiable at $x=0$. The derivative of g is

$$
g^{\prime}(x)= \begin{cases}2 & \text { if } x>0 \\ 0 & \text { if } x<0\end{cases}
$$

and the graph of g^{\prime} looks like

Problem 2. Let

$$
f(x)= \begin{cases}0 & \text { if } x \leq 0 \\ 5-x & \text { if } 0<x<4 \\ \frac{1}{5-x} & \text { if } x \geq 4\end{cases}
$$

(a) Where is f discontinuous?
(b) Find $f^{\prime}(4)$, if it exists. If it does not exist, show why.
(c) Where is f differentiable?
(a) We see that f is discontinuous at $x=5$ since $f(5)$ is undefined. Notice that

$$
\lim _{x \rightarrow 0^{-}} f(x)=0 \quad \text { and } \quad \lim _{x \rightarrow 0^{+}} f(x)=5-0=0 \quad \Rightarrow \lim _{x \rightarrow 0} f(x) \text { DNE. }
$$

Then f is also discontinuous at 0 . However,

$$
\lim _{x \rightarrow 4^{-}} f(x)=5-4=1=f(4)=\lim _{x \rightarrow 4^{+}} f(x)=\frac{1}{5-4^{\prime}},
$$

meaning that f is continuous at $x=4$.
In summary, f is discontinuous at 0 and at 5 .
(b) We have

$$
\lim _{x \rightarrow 4-} \frac{f(x)-f(4)}{x-4}=\lim _{x \rightarrow 4^{-}} \frac{(5-x)-1}{x-4}=\lim _{x \rightarrow 4^{-}} \frac{4-x}{x-4}==\lim _{x \rightarrow 4^{-}}-1=-1
$$

and

$$
\lim _{x \rightarrow 4^{+}} \frac{f(x)-f(4)}{x-4}=\lim _{x \rightarrow 4^{+}} \frac{\frac{1}{5-x}-1}{x-4}=\lim _{x \rightarrow 4^{+}} \frac{\frac{1-(5-x)}{5-x}}{x-4}=\lim _{x \rightarrow 4^{+}} \frac{x-4}{5-x} x=\lim _{x \rightarrow 4^{+}} \frac{1}{5-x}=\frac{1}{5-4}=1 .
$$

Since the previous two limits are unequal, then $f^{\prime}(4)=\lim _{x \rightarrow 4} \frac{f(x)-f(4)}{x-4}$ does not exist, meaning that f is not differentiable at 4 .
(c) Since f is discontinuous at 0 and at 5 , then f is not differentiable at 0 and at 5 . In part (b), we showed that f is not differentiable at 4 . Therefore, f is not differentiable at 0,4 , and 5 .

Problem 3. Match the graphs of the functions in (a)-(f) with the graphs of their derivatives in (A)-(F).
(a)

(b)

(c)

(A)

(B)
(C)

(d) C

(e) A

(f) E

(D)

(E)

(F)

Section 3.1: Derivatives of Polynomials \& Exponential Functions

Problem 4. Problem 4. Find the point on the curve $y=1+2 e^{x}-3 x$ at which the tangent line is parallel to the line $3 x-y=5$.

We have

$$
\frac{d y}{d x}=0+2 e^{x}-3=2 e^{x}-3
$$

The slope of the line $3 x-y=5$ is 3 . Then a line that is parallel to this line will also have slope 3 . Then we solve $\frac{d y}{d x}=3$ to find the x-value(s) at which the tangent line to the given curve is perpendicular to the given line. We have

$$
2 e^{x}-3=3 \Rightarrow 2 e^{x}=6 \quad \Rightarrow \quad e^{x}=3 \quad \Rightarrow \quad x=\ln (3) .
$$

By plugging in $x=\ln (3)$ into $y=1+2 e^{x}-3 x$, we have

$$
y=1+2 e^{\ln (3)}-3 \cdot \ln (3)=1+2 \cdot 3-3 \ln (3)=7-3 \ln (3) .
$$

Therefore, the point at which the tangent line is parallel to the line $3 x-y=5$ is $(\ln (3), 7-3 \ln (3))$.
Problem 5. Show that the curve $y=2 e^{x}+3 x+5 x^{3}$ has no tangent line with slope 2 .
We have

$$
\frac{d y}{d x}=2 e^{x}+3+15 x^{2}
$$

If

$$
2 e^{x}+3+15 x^{2}=2 \quad \Rightarrow \quad 2 e^{x}+15 x^{2}=-1
$$

However, since $2 e^{x}>0$ and $15 x^{2} \geq 0$, this means we have

$$
0<2 e^{x}+15 x^{2}=-1 \quad \Rightarrow 0<-1
$$

which is impossible! This means that no tangent line to the curve of y can have slope 2 .

Section 3.2: The Product \& Quotient Rules

Problem 6. Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ for $f(x)=\sqrt{x} e^{x}$.
$f(x)=\sqrt{x} e^{x} \stackrel{\mathrm{PR}}{\Rightarrow} f^{\prime}(x)=\sqrt{x} e^{x}+e^{x}\left(\frac{1}{2 \sqrt{x}}\right)=\left(\sqrt{x}+\frac{1}{2 \sqrt{x}}\right) e^{x}=\frac{2 x+1}{2 \sqrt{x}} e^{x}$.
Using the Product Rule and $f^{\prime}(x)=\left(x^{1 / 2}+\frac{1}{2} x^{-1 / 2}\right) e^{x}$, we get

$$
f^{\prime \prime}(x)=\left(x^{1 / 2}+\frac{1}{2} x^{-1 / 2}\right) e^{x}+e^{x}\left(\frac{1}{2} x^{-1 / 2}-\frac{1}{4} x^{-3 / 2}\right)=\left(x^{1 / 2}+x^{-1 / 2}-\frac{1}{4} x^{-3 / 2}\right) e^{x}=\frac{4 x^{2}+4 x-1}{4 x^{3 / 2}} e^{x}
$$

Problem 7. Find the derivative of $y=\frac{x^{2} e^{x}}{x^{2}+e^{x}}$.

$$
\begin{aligned}
f(x) & =\frac{x^{2} e^{x}}{x^{2}+e^{x}} \stackrel{\mathrm{QR}}{\Rightarrow} \\
f^{\prime}(x) & =\frac{\left(x^{2}+e^{x}\right)\left[x^{2} e^{x}+e^{x}(2 x)\right]-x^{2} e^{x}\left(2 x+e^{x}\right)}{\left(x^{2}+e^{x}\right)^{2}}=\frac{x^{4} e^{x}+2 x^{3} e^{x}+x^{2} e^{2 x}+2 x e^{2 x}-2 x^{3} e^{x}-x^{2} e^{2 x}}{\left(x^{2}+e^{x}\right)^{2}} \\
& =\frac{x^{4} e^{x}+2 x e^{2 x}}{\left(x^{2}+e^{x}\right)^{2}}=\frac{x e^{x}\left(x^{3}+2 e^{x}\right)}{\left(x^{2}+e^{x}\right)^{2}}
\end{aligned}
$$

