MAT 1505 (Dr. Fuentes) Worksheet 10 - Section 11.2

Section 11.2: Series

Problem 1. Determine whether the series is convergent or divergent by expressing its partial sum

n
Sp = Z a; as a telescoping sum. If it is convergent, find its sum.
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Z n::—?)) Hint: Express - T 113) =44 i% and find A and B by the Method of Partial Fractions.
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(b) Z In ( > Hint: In (%) = In(A) — In(B).

(a) Let us compute the partial sum formulas, = Y ! ; HE=) by expressing - HE R the sum of two
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fractions using the Method of Partial Fractions. We have
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Then we have 3 = 3A, which implies that A = 1 and 0 = A + B, which implies that B = —A = —1.
Then
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Therefore, the series is convergent.

(b) By using properties of logarithms, we have that the partial sum
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Therefore, the series is divergent.



Problem 2. Determine whether the geometric series is convergent or divergent. If it is convergent, find

its sum.
2n

(@) 24+05+.125+0.03125+---,  (b) Z%-

(a) Note that the first few terms of the geometric series are a + ar + ar? + . ... By comparing this with
2+05+.125+0.03125 + - - -, we see that
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a = r=ar=05 = r > 5 1
One can check that 0.125 = 2(1/4)? and 0.03125 = 2(1/20)3. Then
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which means that the series converges.

(b) Note that
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meaning that a = ¢?> and r = ¢2/6 ~ (2.7)>/6 = 7.29/6. Then |r| > 1, which means that the series
diverges.

Problem 3. Determine whether the series is convergent or divergent. If it is convergent, find its sum.
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(@) 3 =+ 5 +- 9 =+ - + F Z . 3n =z > —. This is a constant multiple of the divergent harmonic
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series, so it diverges.

(b) Note that
lim [(—0.2)" +(0.6)" 1] =04+0=0,

n—oo

so we cannot use the Divergence Test. Note that

i +(0.6)" '] =) (-0.2)(-0.2)" " + i

so both of the individual series that make up the entire series are geometric. Since | —0.2| < 1 and
|0.6] < 1, both of the series converge, so
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(©) Z In (2 Ty ) diverges by the Test for Divergence since
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(d) Z ( 2) diverges because S E =9 Z i diverges. (It is 2 times the Harmonic Series.
=1 \ 5" n n=11 n=1 "7 which diverges).



