Logarithmic Functions

If b > 0 and $b \ne 1$, the exponential function $f(x) = b^x$ is either increasing or decreasing and so it is one-to-one by the Horizontal Line Test. It therefore has an inverse function f^{-1} , which is called the **logarithmic function with base** b and is denoted by \log_b . If we use the formulation of an inverse function given by (3),

$$f^{-1}(x) = y \iff f(y) = x$$

then we have

6

$$\log_b x = y \iff b^y = x$$

Thus, if x > 0, then $\log_b x$ is the exponent to which the base *b* must be raised to give *x*. For example, $\log_{10} 0.001 = -3$ because $10^{-3} = 0.001$.

The cancellation equations (4), when applied to the functions $f(x) = b^x$ and $f^{-1}(x) = \log_b x$, become

7

$$\log_b(b^x) = x$$
 for every $x \in \mathbb{R}$
 $b^{\log_b x} = x$ for every $x > 0$

The logarithmic function \log_b has domain $(0, \infty)$ and range \mathbb{R} . Its graph is the reflection of the graph of $y = b^x$ about the line y = x.

Figure 11 shows the case where b > 1. (The most important logarithmic functions have base b > 1.) The fact that $y = b^x$ is a very rapidly increasing function for x > 0 is reflected in the fact that $y = \log_b x$ is a very slowly increasing function for x > 1.

Figure 12 shows the graphs of $y = \log_b x$ with various values of the base b > 1. Because $\log_b 1 = 0$, the graphs of all logarithmic functions pass through the point (1, 0).

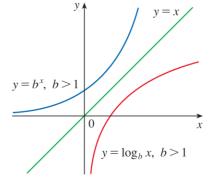
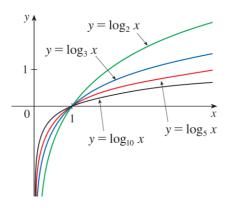



FIGURE 11

FIGURE 12

The following properties of logarithmic functions follow from the corresponding properties of exponential functions given in Section 1.4.

Laws of Logarithms If x and y are positive numbers, then

1.
$$\log_b(xy) = \log_b x + \log_b y$$

$$2. \log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y$$

3.
$$\log_b(x^r) = r \log_b x$$
 (where *r* is any real number)