Section 1.1: Four Ways to Represent a Function

Problem 1. In each of the following equations, please determine whether y is a function of x and if x is a function of y. Please support your answers with an explanation.
(a) $x^{2}+(y-3)^{2}=5$
(b) $x+(y-3)^{3}=5$
(a) The equation is that of a circle of radius $\sqrt{5}$ with center $(0,3)$. By graphing the equation by treating x or y as the input variable, we obtain the graphs shown below.

If we were to draw the vertical line $x=1$ on the graph on the left, we see that it would cross the circle twice, meaning that it does not pass the Vertical Line Test (VLT). Therefore, y is not a function of x. If we were to draw the vertical line $y=1$ on the graph on the right, we see that it would cross the circle twice, meaning that it does not pass the VLT. Therefore, x is not a function of y.
(b) By solving the equation for y, we obtain

$$
(y-3)^{3}=5-x \Rightarrow y-3=\sqrt[3]{5-x} \Rightarrow y=\sqrt[3]{5-x}+3
$$

The equation is a transformation of the function $y=\sqrt[3]{x}$. The graph is shown below. The graph above

passes the VLT. Then y is a function of x.
Solving the equation for x, we have $x=5-(y-3)^{3}$, which is a transformation of the function $x=y^{3}$. Its graph (shown below) passes the VLT. Therefore, x is a function of y.

Problem 2. Sketch the graph of each of the following functions.
(a) $f(x)=\frac{|x+1|}{x+1}$
(b) $g(x)=||x|-1|$
(a) Note that $x+1 \neq 0$, since $x=-1$ is not in the denominator of the function. We have

$$
f(x)=\frac{|x+1|}{x+1}=\left\{\begin{array}{ll}
\frac{x+1}{x+1} & \text { if } x+1>0 \\
\frac{-(x+1)}{x+1} & \text { if } x+1<0
\end{array}= \begin{cases}1 & \text { if } x>-1 \\
-1 & \text { if } x<-1\end{cases}\right.
$$

(b) We have

$$
g(x)=||x|-1|=\left\{\begin{array}{ll}
|x|-1 & \text { if }|x|-1 \geq 0 \\
-(|x|-1) & \text { if }|x|-1<0
\end{array}= \begin{cases}|x|-1 & \text { if } x \leq-1 \text { OR } x \geq 1 \\
-|x|+1 & \text { if }-1<x<1\end{cases}\right.
$$

Problem 3. Find the domain of each of the following functions:
(a) $f(x)=\frac{\sqrt{x^{2}-1}}{x-2}$,
(b) $g(x)=\frac{1}{\sqrt[4]{x^{2}-5 x}}$.

Please state your answer in set or interval notation.
(a) We have

$$
\begin{aligned}
\operatorname{dom}(f) & =\left\{x \mid x^{2}-1 \geq 0, x-2 \neq 0\right\} \\
& =\left\{x \mid x^{2} \geq 1, x \neq 2\right\} \\
& =\{x \mid x \geq 1, x \leq-1, x \neq 2\} \\
& =(-\infty,-1) \cup(1,2) \cup(2, \infty) .
\end{aligned}
$$

(b) We have

$$
\begin{aligned}
\operatorname{dom}(g) & =\left\{x \mid x^{2}-5 x>0\right\} \\
& =\{x \mid x(x-5)>0\} \\
& =\{x \mid x<0, x>5\} \\
& =(-\infty, 0) \cup(5, \infty) .
\end{aligned}
$$

Section 1.3: New Functions from Old Functions

Problem 4. Use the graph of $f(x)=\sin (2 x)$ to sketch the graph of $g(x)=|\sin (2 x)|$.

The graph of $f(x)=\sin (2 x)$ is a transformation of $y=\sin (x)$ (horizontal shrink by a factor of 2). Its graph is shown below.

To obtain the graph of $g(x)=|\sin (2 x)|$, we take the graph of $f(x)=\sin (2 x)$ and reflect all parts of the graph that lie below the x-axis over the x-axis. The graph of g is shown below.

Problem 5. Let $f(x)=\frac{1}{x-1}$ and $g(x)=\sqrt{x-1}$.
Find $f+g, f-g, f g$, and f / g and state each of their domains.
We have

$$
\begin{aligned}
& (f+g)(x)=f(x)+g(x)=\frac{1}{x-1}+\sqrt{x-1} \\
& (f-g)(x)=f(x)-g(x)=\frac{1}{x-1}-\sqrt{x-1}
\end{aligned}
$$

and

$$
(f g)(x)=f(x) \cdot g(x)=\frac{1}{x-1}(\sqrt{x-1})=\frac{\sqrt{x-1}}{x-1}
$$

Since the domain of f is

$$
\operatorname{dom}(f)=\{x \mid x \neq 1\}=(-\infty, 1) \cup(1, \infty)
$$

and the domain of g is

$$
\operatorname{dom}(g)=\{x \mid x \geq 1\}=[1, \infty)
$$

the domains of $f+g, f-g$, and $f g$ are

$$
\operatorname{dom}(f+g)=\operatorname{dom}(f-g)=\operatorname{dom}(f g)=\operatorname{dom}(f) \cap \operatorname{dom}(g)=(1, \infty)
$$

The function

$$
\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}=\frac{\frac{1}{x-1}}{\sqrt{x-1}}=\frac{1}{(x-1) \sqrt{x-1}}=\frac{1}{(x-1)^{3 / 2}} .
$$

Since

$$
\{x \mid g(x) \neq 0\}=\{x \mid x \neq 1\}=(-\infty, 1) \cup(1, \infty)
$$

then

$$
\operatorname{dom}\left(\frac{f}{g}\right)=\operatorname{dom}(f) \cap \operatorname{dom}(g) \cap\{x \mid g(x) \neq 0\}=(1, \infty)
$$

Problem 6. Given $F(x)=\sqrt[3]{x^{2}+1}+6$, find functions f, g, and h such that $F=f \circ g \circ h$.
We can let

$$
h(x)=x^{2}+1, \quad g(x)=\sqrt[3]{x}, \quad, f(x)=x+6
$$

Let us check that $F=f \circ g \circ h$. Since

$$
(g \circ h)(x)=g(h(x))=g\left(x^{2}+1\right)=\sqrt[3]{x^{2}+1}
$$

then

$$
(f \circ g \circ h)(x)=f(g(h(x)))=f\left(\sqrt[3]{x^{2}+1}\right)=\sqrt[3]{x^{2}+1}+6=F(x)
$$

