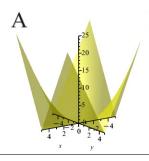
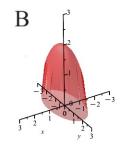
Section 14.1: Functions of Several Variables

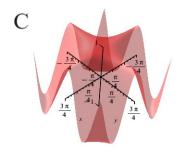
Problem 1. Let $f(x, y) = e^{\sqrt{y-x^2}}$.

- (a) Evaluate f(-2,5). (b) Find and sketch the domain of f.
- (c) Find the range of f.

Problem 2. Find and sketch the domain of

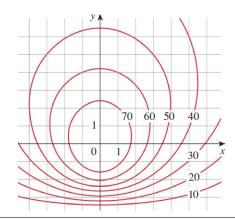

(a) $g(x,y) = \sqrt{x} + \sqrt{4 - 4x^2 - y^2}$ (b) $h(x,y) = \frac{\sqrt{xy}}{x+1}$

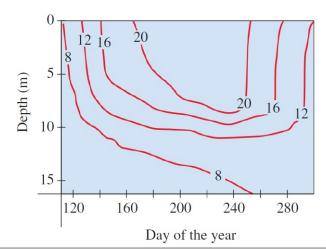

Problem 3. Match each 2-variable function below with their graph.


HINT: Find trace curves with planes that are **not** coordinate planes for (a) and (b).

(a) $f(x,y) = \cos(xy)$ _____ (b) g(x,y) = |xy| _____

(c) $h(x,y) = \sqrt{4-4x^2-y^2}$




Problem 4. Find and sketch the domain of

 $f(x,y,z) = \sqrt{4-x^2} + \sqrt{9-y^2} + \sqrt{1-z^2}.$

Problem 5. A contour map for a function f is shown. Use it to estimate the values of f(-3,3) and f(3, -2). What can you say about the shape of the graph?

Problem 6. Level curves (isothermals) are shown for the typical water temperature (in $^{\circ}$ C) in Long Lake (Minnesota) as a function of depth and time of year. Estimate the temperature in the lake on June 9 (day 160) at a depth of 10 m and on June 29 (day 180) at a depth of 5 m.

