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THE EXTREMALITY OF 2-PARTITE TUR\'AN GRAPHS WITH
RESPECT TO THE NUMBER OF COLORINGS\ast 

MELISSA M. FUENTES\dagger 

Abstract. We consider a problem proposed by Linial and Wilf to determine the structure of
graphs that allows the maximum number of q-colorings among graphs with n vertices and m edges.
Let Tr(n) denote the Tur\'an graph---the complete r-partite graph on n vertices with partition sizes
as equal as possible. We prove that for all odd integers q \geq 5 and sufficiently large n, the Tur\'an
graph T2(n) has at least as many q-colorings as any other graph G with the same number of vertices
and edges as T2(n), with equality holding if and only if G= T2(n). Our proof builds on methods by
Norine and by Loh, Pikhurko, and Sudakov, which reduces the problem to a quadratic program.

Key words. chromatic polynomial, Linial--Wilf problem, Lazebnik's conjecture, Tur\'an graph,
maximizing number of colorings
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1. Introduction. For a positive integer q, let [q] = \{ 1,2, . . . , q\} . A function
f : V (G)\rightarrow [q] such that f(x) \not = f(y) for every edge xy of a graph G is called a proper
vertex coloring of G in at most q colors, or simply a q-coloring of G. The set [q] is
often referred to as the set of colors.

Let PG(q) denote the number of all q-colorings of a given graph G. This number
was introduced and studied by Birkhoff [2], who proved that it is always a polynomial
in q, and is known as the chromatic polynomial of G. The parameter PG(q) has been
extensively studied over the past century. In particular, Linial [9] and Wilf [1, 15, 16]
had independently posed the problem of determining the graphs that maximize the
number of q-colorings among all graphs with n vertices and m edges. The problem
was completely solved for q= 2 by Lazebnik in [4], but remains largely open in general
and has been a topic of extensive research. For a survey of numerous results on this
problem, see Lazebnik [6].

For a positive integer r, let Tr(n) denote the r-partite Tur\'an graph, that is, the
complete r-partite graph of order n with all parts nearly equal in size (each part is
of size \lfloor n/r\rfloor or \lceil n/r\rceil ). Let tr(n) denote the number of edges of Tr(n). Our main
motivation is the following conjecture made by Lazebnik in 1987, although it first
appeared in print in [7].

Conjecture 1.1 ([7]). For all n \geq r \geq 2 and q \geq r, the Tur\'an graph Tr(n) is
the only graph on n vertices and tr(n) edges that attains the maximum number of
q-colorings.

When q= r, the statement follows from the celebrated Tur\'an theorem [14], since
any graph with n vertices and tr(n) edges that is not Tr(n) does not have an r-
coloring. Lazebnik proved Conjecture 1.1 when r= 2 and q\geq (n/2)5 in [4] and when
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2524 MELISSA M. FUENTES

n is a positive integer divisible by r and q \geq 2
\bigl( 
tr(n)

3

\bigr) 
in [5]. For r = 2 and q = 3,

Lazebnik, Pikhurko, and Woldar [7] proved the conjecture when n is even, as well
as an asymptotic version when q = 4 for even n, as long as n is sufficiently large.
Their result for q = 4 was extended by Tofts [13] to all n \geq 4. Loh, Pikhurko, and
Sudakov proved the conjecture for q = r + 1 for large n in [10], and their result was
later extended to all n \geq r by Lazebnik and Tofts in [8]. This was greatly improved
by Norine [12], who developed further powerful techniques from [10] and showed that
for any positive integers q and r such that 2 \leq r < q and r divides q, Conjecture 1.1
is true, provided that n is sufficiently large. The most recent result was by Ma and
Naves [11], who showed that Conjecture 1.1 is true for all q \geq 100r2/(log(r)), for n
sufficiently large.

Conjecture 1.1 was widely believed to be true, especially since there are many
results confirming it in several cases. However, Ma and Naves [11] constructed coun-
terexamples in some ranges of r and q. For example, if r + 3 \leq q \leq 2r  - 7 and
r \geq 10, then Conjecture 1.1 is false. Also, for all integers r \geq 50000 and q0 such that
20r\leq q0 \leq r2

200 \mathrm{l}\mathrm{o}\mathrm{g}(r) , there exists an integer q within distance at most r from q0, such
that Conjecture 1.1 is false for r and q. Nevertheless, Conjecture 1.1 is still believed
to be true for integers r and q, where 2 \leq r \leq 9 and q \geq r. The first case for which
there are no explicit or asymptotic results is for r= 2 and odd q\geq 5. This motivated
the research done in this paper. The main result is the following theorem.

Theorem 1.2. Let q \geq 5 be an odd integer. Then for all sufficiently large n, the
Tur\'an graph T2(n) has more q-colorings than any other graph with the same number
of vertices and edges.

1.1. Notation. All graphs in this article are finite, undirected, and have nei-
ther loops nor multiple edges. For all missing definitions and basic facts which are
mentioned but not proved, we refer the reader to Bollob\'as [3].

For a graph G, let V = V (G) and E = E(G) denote the vertex set of G and the
edge set of G, respectively. Let | A| denote the size of a set A. Let e(G) = | E(G)| 
denote the number of edges of G. For A \subseteq V (G), let G[A] denote the subgraph of
G induced by A, which means that V (G[A]) = A, and E(G[A]) consists of all edges
xy of G with both x and y in A. For a vertex v of G, let dA(v) denote the degree of
v in A, the number of vertices in A that are adjacent to v. For two disjoint subsets
A,B \subseteq V (G), by G[A,B] we denote the bipartite subgraph of G induced by A and B,
which means that V (G[A,B]) =A\cup B, and E(G[A,B]) consists of all edges of G with
one end-vertex in A and the other in B. Let k be a positive integer. A k-partition
of a set S is a collection of disjoint subsets A1,A2, . . . ,Ak (possibly empty) such that
S =A1 \cup A2 \cup \cdot \cdot \cdot \cup Ak.

1.2. Organization. In section 2, the aforementioned approach from [10] is pre-
sented, as well as two important graph constructions and powerful related results from
[10] and [11] that will be used to prove Theorem 1.2. In section 3, new techniques
are used to solve the relevant instances of the linear optimization problem by Loh,
Pikhurko, and Sudakov [10]. In section 4, an approximate version of Theorem 1.2
is proved. The main result, Theorem 1.2, is derived in section 5, using the results
of the previous sections. Finally, several open problems for future investigation are
mentioned in section 6.

2. The linear optimization problem and associated graph construc-
tions. In their breakthrough paper, Loh, Pikhurko, and Sudakov [10] developed the
optimization problem OPT for future researchers to use to determine the graphs

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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MAXIMUM NUMBER OF COLORINGS OF TUR\'AN GRAPHS 2525

that maximize the number of q-colorings among all graphs with the same numbers of
vertices and edges. They remark that ``the remaining challenge is to find analytic ar-
guments which solve the optimization problem for general q."" We will solve particular
cases of the optimization problem in section 4.

2.1. The linear optimization problem by Loh, Pikhurko, and Sudakov.
It is shown in [10] that solving the problem proposed by Linial [9] and Wilf [1, 15, 16]
for large n reduces to a quadratically constrained linear program, which we now define.

Let \BbbR denote the set of real numbers. Let \bfitalpha = (\alpha A)A\subseteq [q],A\not =\emptyset be a vector with
2q  - 1 entries \alpha A \in \BbbR that are indexed by the nonempty subsets A \subseteq [q]. When all
components of \bfitalpha are nonnegative we will write \bfitalpha \geq 0. The logarithms below and in
the rest of the paper are natural.

Fix an integer q \geq 2 and a real number \gamma that satisfies 0 < \gamma \leq (q  - 1)/(2q).
Consider the following functions of \bfitalpha :

OBJq(\bfitalpha ) :=
\sum 
A \not =\emptyset 

\alpha A log | A| ; Vq(\bfitalpha ) :=
\sum 
A\not =\emptyset 

\alpha A; Eq(\bfitalpha ) :=
\sum 

\{ A,B\} :A\cap B=\emptyset 
A\not =\emptyset ,B \not =\emptyset 

\alpha A\alpha B .

The sums in OBJq(\bfitalpha ) and Vq(\bfitalpha ) run over all nonempty subsets of [q], and the sum
in Eq(\bfitalpha ) runs over all unordered pairs of disjoint nonempty subsets of [q]. In the
remainder of this paper, we will suppress mentioning that the sets over which the
sums above are taken are nonempty.

Let FEASq(\gamma ) be defined by

FEASq(\gamma ) := \{ \bfitalpha \in \BbbR 2q - 1 :\bfitalpha \geq 0, Vq(\bfitalpha ) = 1, and Eq(\bfitalpha )\geq \gamma \} .

The elements of FEASq(\gamma ) will be referred to as feasible vectors. Our goal is to
maximize OBJq(\bfitalpha ) over FEASq(\gamma ).

Optimization Problem (OPT) 2.1. Find

OPTq(\gamma ) := max
\bfitalpha \in \mathrm{F}\mathrm{E}\mathrm{A}\mathrm{S}q(\gamma )

OBJq(\bfitalpha ).

As noted in [10], a solution of OPT exists by continuity of OPTq(\gamma ) and by
compactness of the set FEASq(\gamma ). We say that \bfitalpha solves OPTq(\gamma ) (or just OPT) if
\bfitalpha \in FEASq(\gamma ) and OBJq(\bfitalpha ) =OPTq(\gamma ).

Our objective in solving OPT is to obtain the approximate structure of a graph
on n vertices and at least \gamma n2 edges that has the greatest number of q-colorings,
provided that n is sufficiently large. We define such a graph in the next section.

Loh, Pikhurko, and Sudakov [10] had solved OPT for all q \geq 3 when \gamma satisfies
0\leq \gamma \leq \kappa q, where

\kappa q :=

\Biggl( \sqrt{} 
log(q/(q - 1))

log(q)
+

\sqrt{} 
log(q)

log(q/(q - 1))

\Biggr)  - 2

\approx 1

q log(q)
.

Norine [12] presented an argument that solves OPT when \gamma = (r  - 1)/(2r),
where r is the number of parts in the Turan graph, Tr(n), and q is divisible by r. In
particular, Norine completely solved OPT for \gamma = 1/4 (that is, r = 2) and all even
integers q \geq 2. In section 4 we extend his solution to all \gamma within a closed interval of
real numbers [1/4 - \epsilon ,1/4] when \epsilon > 0 is sufficiently small and q\geq 5.
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2526 MELISSA M. FUENTES

2.2. Graph constructions based on feasible vectors. The following is a
graph construction from [10] that is based on an arbitrary feasible vector \bfitalpha . Note
that this construction may not result in a unique graph.

Construction (\bfitG \bfitalpha (\bfitn )) 2.2. Let \gamma be a real number, n\geq 1, and \bfitalpha \in FEASq(\gamma ).
The n-vertex graph G\bfitalpha (n) is constructed by partitioning the n vertices into disjoint
sets VA, indexed by the nonempty subsets A \subseteq [q], such that each | VA| differs from
n\alpha A by less than 1. For every pair of nonempty A,B \subseteq [q] with A\cap B = \emptyset , join every
vertex in VA to every vertex of VB by an edge.

If all n\alpha A happened to be integers, the graph G\bfitalpha (n) would be unique and G\bfitalpha (n)
would have precisely Eq(\bfitalpha )n2 edges and at least\prod 

A\not =\emptyset 

| A| n\alpha A = e\mathrm{O}\mathrm{B}\mathrm{J}q(\bfitalpha )n

q-colorings, since any coloring in which the vertices in VA are only colored with colors
in A results in a q-coloring of G\bfitalpha (n). However, if this is not the case, the choice
in size of each VA may result in a graph with fewer than \gamma n2 edges (recall that
Eq(\bfitalpha )n2 \geq \gamma n2). Fortunately, we may use Proposition 2.3 to obtain another graph
on n vertices which is ``close"" (to be defined next) to G\bfitalpha (n), and which has at least
\gamma n2 edges.

Given graphs G and H with the same set of vertices, their edit distance is the
minimum number of edges that need to be added or deleted from one graph to obtain
a graph isomorphic to the other.

Proposition 2.3 ([10]). For any feasible vector \bfitalpha , the number of edges in any
graph G\bfitalpha (n) differs from Eq(\bfitalpha )n2 by less than 2qn. Also, for any other feasible vector
\bfitnu , the edit distance between G\bfitalpha (n) and G\bfitnu (n) is at most \| \bfitalpha  - \bfitnu \| 1 n2+2q+1n, where
\| \cdot \| 1 is the L1-norm on \BbbR 2q - 1.

Proposition 2.3 and Theorem 2.4 will be important in the proof of our main result,
Theorem 1.2, in section 5.

Theorem 2.4 ([10]). For any \delta ,\kappa > 0, the following holds for all sufficiently
large n. Let G be an n-vertex graph with m edges, where m \leq \kappa n2, which has at
least as many q-colorings as any other graph with the same number of vertices and
edges. Then G is \epsilon n2-close to a graph G\bfitalpha (n) for some feasible vector \bfitalpha which solves
OPTq(\gamma ) for some \gamma , where | \gamma  - m/n2| < \epsilon and \gamma \leq \kappa .

The support of a feasible vector \bfitalpha = (\alpha A)A\subseteq [q],A\not =\emptyset , denoted by suppq(\bfitalpha ), is the
collection of sets A\subseteq [q] such that \alpha A > 0. The following graph construction is from
[11].

Construction (SUPP\bfitq (\bfitalpha )) 2.5. Let \bfitalpha \in FEASq(\gamma ). The set of vertices of
the graph SUPPq(\bfitalpha ) is suppq(\bfitalpha ) and the edge set is formed by connecting pairs of
disjoint sets.

The graph SUPPq(\bfitalpha ) is called the support graph of a feasible vector \bfitalpha . We
define two classes of graphs SUPPq(\bfitalpha ) as follows. Let \scrP k be the class of all graphs
SUPPq(\bfitalpha ) for which suppq(\bfitalpha ) forms a k-partition A1,A2, . . . ,Ak of [q], with only
nonempty sets. Let \scrQ k be the class of all graphs SUPPq(\bfitalpha ) for which suppq(\bfitalpha )
consists of a k-partition A1,A2, . . . ,Ak of [q], with only nonempty sets, together with
the set A1 \cup A2.

Fix a positive integer k and let \bfitalpha be a vector such that the graph SUPPq(\bfitalpha ) is
in \scrP k or \scrQ k. Consider a restricted version of OPT for such vectors \bfitalpha .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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MAXIMUM NUMBER OF COLORINGS OF TUR\'AN GRAPHS 2527

Optimization Problem (OPT2) 2.6. Maximize

k\sum 
i=1

\alpha Ai log(| Ai| ) + \alpha A1\cup A2 log(| A1| + | A2| ),

subject to

k\sum 
i=1

\alpha Ai
+ \alpha A1\cup A2

= 1,

k\sum 
i=1

\alpha 2
Ai

+ \alpha 2
A1\cup A2

+ 2\alpha A1\cup A2
(\alpha A1

+ \alpha A2
)\leq 1 - 2\gamma ,

and

\alpha Ai \geq 0, \alpha A1\cup A2 \geq 0 for i= 1, . . . , k.

The conditions of OPT 2 are consistent with the conditions of OPT, when
restricted to vectors with support graph in \scrQ k \cup \scrP k. The following observation was
made in [11] using the Cauchy--Schwarz inequality.

Observation 2.7. We have k \geq 1/\lceil 1  - 2\gamma \rceil in OPT 2, with a strict inequality
holding if \alpha A1 + \alpha A2 > 0 and \alpha A1\cup A2 > 0.

Define

\scrP =
\bigcup 

\lceil 1
1 - 2\gamma \rceil \leq k\leq q

\scrP k.

The next theorem determines the structure of the graph SUPPq(\bfitalpha ) when \bfitalpha solves
OPT.

Theorem 2.8 ([11]). For an integer q and real \gamma that satisfy 0<\gamma \leq (q - 1)/(2q),
all solutions to OPT are such that SUPPq(\bfitalpha ) is in either \scrP or \scrQ \lceil 1/(1 - 2\gamma )\rceil . When
\gamma < (q - 1)/(2q), we have SUPPq(\bfitalpha ) /\in \scrP q.

3. Relevant solutions of OPT. In this section we use new methods to provide
an analytic solution to OPT for odd q\geq 5 for all \gamma sufficiently close to 1/4. Although
a computer solution can be found for fixed \gamma , an analytic solution is necessary to solve
OPT for all \gamma within a closed interval of real numbers [1/4 - \epsilon ,1/4] for small \epsilon > 0.

The main result of this section is the following theorem. For any set S, we denote
its complement by Sc.

Theorem 3.1. The following holds for all \gamma sufficiently close to 1/4. Any solution
\bfitalpha of OPT for odd q\geq 5 has suppq(\bfitalpha ) = \{ A,Ac\} , where A\subseteq [q] and | A| = \lceil q/2\rceil , and

\alpha A =
1+

\surd 
1 - 4\gamma 

2
and \alpha Ac = 1 - \alpha A,

which gives

OPTq(\gamma ) =
1

2
log (\lceil q/2\rceil \cdot \lfloor q/2\rfloor ) +

\surd 
1 - 4\gamma 

2
log

\biggl( 
\lceil q/2\rceil 
\lfloor q/2\rfloor 

\biggr) 
.

Note that the vector \bfitalpha defined in Theorem 3.1 is a feasible vector. We will
use a constraint that is equivalent to Eq(\bfitbeta ) \geq \gamma for all \bfitbeta \in FEAS(\gamma ), specifically,
1 - 2Eq(\bfitbeta )\leq 1 - 2\gamma . In addition, note that

1 - 2Eq(\bfitbeta ) =
\sum 

(B,S):B\cap S \not =\emptyset 

\beta B\beta S =
\sum 
S

PS(q)\beta S ,(3.1)
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2528 MELISSA M. FUENTES

where

PS(q) :=
\sum 

B:B\cap S \not =\emptyset 

\beta B .

Therefore, \sum 
S

PS(q)\beta S = 1 - 2Eq(\bfitbeta )\leq 1 - 2\gamma .(3.2)

Recall that q is the number of colors. We continue with two lemmas which
hold for all integers q \geq 2 that will be used in the proof of Theorem 3.1. For \bfitbeta =
(\beta S)S\subseteq [q],S \not =\emptyset \in FEASq(\gamma ) and every S \in suppq(\bfitbeta ), let

QS(q) :=
| S| 
q
.

Lemma 3.2 below is a technical result to be used in the proof of Lemma 3.3.

Lemma 3.2. Let \gamma satisfy 0<\gamma \leq 1/4 and let \bfitbeta \in FEASq(\gamma ). Then\sum 
S

\Bigl( 
2
\sqrt{} 
2QS(q) - (3 - 4\gamma )

\Bigr) 
\beta S \leq 0.(3.3)

Proof. By a comparison of the geometric and arithmetic mean of two numbers
we obtain

2
\sqrt{} 
2QS(q)\leq (2 - 4\gamma )

QS(q)

PS(q)
+

1

1 - 2\gamma 
PS(q).(3.4)

Thus, \sum 
S

\Bigl( 
2
\sqrt{} 
2QS(q) - (3 - 4\gamma )

\Bigr) 
\beta S(3.5)

\leq 
\sum 
S

\biggl( 
(2 - 4\gamma )

QS(q)

PS(q)
+

1

1 - 2\gamma 
PS(q) - (3 - 4\gamma )

\biggr) 
\beta S .

Now we show that\sum 
S

\biggl( 
(2 - 4\gamma )

QS(q)

PS(q)
+

1

1 - 2\gamma 
PS(q) - (3 - 4\gamma )

\biggr) 
\beta S \leq 0.(3.6)

Let us prove that \sum 
S

QS(q)

PS(q)
\beta S \leq 1.(3.7)

Let \emptyset \not = S \subseteq [q], and let \chi S : [q]\rightarrow \{ 0,1\} be defined by

\chi S(x) =

\Biggl\{ 
1 if x\in S,
0 if x /\in S.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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MAXIMUM NUMBER OF COLORINGS OF TUR\'AN GRAPHS 2529

Take any x\in [q]. Then

\sum 
S

\chi S(x)

PS(q)
\beta S =

\sum 
S:x\in S

1

PS(q)
\beta S =

\sum 
S:x\in S

\left(     1\sum 
B:B\cap S \not =\emptyset 

\beta B

\right)     \beta S(3.8)

\leq 
\sum 

S:x\in S

\left(    1\sum 
B:x\in B

\beta B

\right)    \beta S

= 1,

where for x \in S, the last inequality in (3.8) is due to the fact that x \in B implies
B \cap S \not = \emptyset .

Note that
\sum 

x\in [q] \chi S(x) = | S| . Then, using (3.8), we have

q=
\sum 
x\in [q]

1\geq 
\sum 
x\in [q]

\sum 
S

\chi S(x)

PS(q)
\beta S =

\sum 
S

\sum 
x\in [q] \chi S(x)

PS(q)
\beta S(3.9)

=
\sum 
S

| S| 
PS(q)

\beta S

= q
\sum 
S

QS(q)

PS(q)
\beta S ,

which implies (3.7).
Using (3.7), (3.2), and Vq(\bfitbeta ) = 1, we obtain (3.6). Therefore, (3.5) and (3.6)

imply that (3.3) holds. The proof is complete.

Next we show that the sum of the components corresponding to sets of size
roughly q/2 in the support of a feasible vector \bfitbeta with OBJq(\bfitbeta ) being at least as
large as the optimal value claimed in Theorem 3.1 carry more ``weight"" than the sum
of components corresponding to sets of other sizes (recall that Vq(\bfitbeta ) = 1 and all
components of feasible vectors are nonnegative).

Lemma 3.3. Let \bfitbeta \in FEASq(\gamma ), where q\geq 5 is odd. If

OBJq(\bfitbeta )\geq OBJq(\bfitalpha ) =
1

2
log (\lceil q/2\rceil \cdot \lfloor q/2\rfloor ) +

\surd 
1 - 4\gamma 

2
log

\biggl( 
\lceil q/2\rceil 
\lfloor q/2\rfloor 

\biggr) 
,(3.10)

then for all \gamma sufficiently close to 1/4,

\sum 
S:| S| =\lceil q/2\rceil ,\lfloor q/2\rfloor 

\beta S \geq 

\Biggl\{ 
0.76 if q= 5,

0.80 if q\geq 7.
(3.11)

Proof. Let \bfitbeta = (\beta S)\in FEASq(\gamma ). Then by Lemma 3.2, we have\sum 
S

\Bigl( 
2
\sqrt{} 
2QS(q) - (3 - 4\gamma )

\Bigr) 
\beta S \leq 0.
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2530 MELISSA M. FUENTES

Then \sum 
S

\Bigl( 
2
\sqrt{} 
2QS(q) - (3 - 4\gamma )

\Bigr) 
\beta S

\leq OBJq(\bfitbeta ) - 
1

2
log (\lceil q/2\rceil \cdot \lfloor q/2\rfloor ) - 

\surd 
1 - 4\gamma 

2
log

\biggl( 
\lceil q/2\rceil 
\lfloor q/2\rfloor 

\biggr) 
by (3.10),

=
\sum 
S

log (| S| )\beta S  - 1

2
log (\lceil q/2\rceil \cdot \lfloor q/2\rfloor ) +

\surd 
1 - 4\gamma 

2
log

\biggl( 
\lfloor q/2\rfloor 
\lceil q/2\rceil 

\biggr) 
=
\sum 
S

\biggl( 
log(2QS(q)) +

1

2
log

\biggl( 
q2

q2  - 1

\biggr) 
+

\surd 
1 - 4\gamma 

2
log

\biggl( 
\lfloor q/2\rfloor 
\lceil q/2\rceil 

\biggr) \biggr) 
\beta S ,

and therefore,

0\leq 
\sum 

m\in \{ 2,4,6,...,2q\} 

\sum 
S:| S| =m/2

f(m,q, \gamma )\beta S ,(3.12)

where we define

f(m,q, \gamma ) = log

\biggl( 
m

q

\biggr) 
+

1

2
log

\biggl( 
q2

q2  - 1

\biggr) 
+

\surd 
1 - 4\gamma 

2
log

\biggl( 
\lfloor q/2\rfloor 
\lceil q/2\rceil 

\biggr) 
 - 2

\sqrt{} 
m

q
+ 3 - 4\gamma .

(3.13)

The following claim will help us find maximum values of f(m,q, \gamma ) over certain
ranges of m.

Claim 3.4. Let q\geq 5 and m\in [2,2q] be real numbers. For fixed q, define

hq(m) = log

\biggl( 
m

q

\biggr) 
 - 2

\sqrt{} 
m

q
.

Then hq(m) is increasing on [2, q) and is decreasing on (q,2q]. Moreover, for a real
number k \in [1, q - 2],

hq(q - k)<hq(q+ k).(3.14)

Proof of Claim 3.4. Observe that

d

dm
hq(m) =

1 - 
\sqrt{} 
m/q

m
.

Since
\sqrt{} 
m/q > 1 whenever q <m\leq 2q and

\sqrt{} 
m/q < 1 whenever 2\leq m< q, then the

first part of the claim holds.
If we substitute t= k/q, the inequality (3.14) is equivalent to

log

\biggl( 
1 + t

1 - t

\biggr) 
> 2

\bigl( \surd 
1 + t - 

\surd 
1 - t

\bigr) 
(3.15)

for 1/q\leq t\leq 1 - 2/q.
Let us show that (3.15) holds for any t\in (0,1). Since [1/q,1 - 2/q]\subseteq (0,1), it will

imply (3.14).
Consider the function

L(t) := log

\biggl( 
1 + t

1 - t

\biggr) 
 - 2

\bigl( \surd 
1 + t - 

\surd 
1 - t

\bigr) 
.
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MAXIMUM NUMBER OF COLORINGS OF TUR\'AN GRAPHS 2531

For t\in (0,1), we have

L\prime (t) =
2

1 - t2
 - 
\biggl( 

1\surd 
1 + t

+
1\surd 
1 - t

\biggr) 
=

2 - 
\surd 
1 - t2

\bigl( \surd 
1 + t+

\surd 
1 - t

\bigr) 
1 - t2

.

It can be easily verified that\sqrt{} 
1 - t2 \cdot (

\surd 
1 + t+

\surd 
1 - t)<

\surd 
1 + t+

\surd 
1 - t < 2.

Therefore, L\prime (t)> 0 for all t \in (0,1). As L(0) = 0 and L is continuous at 0, L(t)> 0
on (0,1), which proves the inequality (3.15). Therefore, (3.14) holds.

Let g(q, \gamma ) := 1
2 log(

q2

q2 - 1 ) +
\surd 
1 - 4\gamma 
2 log( \lfloor q/2\rfloor \lceil q/2\rceil ) + 3 - 4\gamma . Claim 3.4 implies that

max
m\in \{ q - 1,q+1\} 

f(m,q, \gamma ) = g(q, \gamma ) + max
m\in \{ q - 1,q+1\} 

hq(m)(3.16)

= g(q, \gamma ) + hq(q+ 1)

= f(q+ 1, q, \gamma )

and

max
m/\in \{ q - 1,q+1\} 

f(m,q, \gamma ) = g(q, \gamma ) + max
m/\in \{ q - 1,q+1\} 

hq(m)(3.17)

= g(q, \gamma ) + hq(q+ 3)

= f(q+ 3, q, \gamma ).

By combining these observations with (3.13) we obtain

0\leq 
\sum 

m\in \{ q - 1,q+1\} 

\sum 
S:| S| =m/2

f(m,q, \gamma )\beta S +
\sum 

m/\in \{ q - 1,q+1\} 

\sum 
S:| S| =m/2

f(m,q, \gamma )\beta S

\leq f(q+ 1, q, \gamma )
\sum 

S:| S| \in \{ \lfloor q/2\rfloor ,\lceil q/2\rceil \} 

\beta S + f(q+ 3, q, \gamma )
\sum 

S:| S| /\in \{ \lfloor q/2\rfloor ,\lceil q/2\rceil \} 

\beta S

= (f(q+ 1, q, \gamma ) - f(q+ 3, q, \gamma ))
\sum 

S:| S| \in \{ \lfloor q/2\rfloor ,\lceil q/2\rceil \} 

\beta S + f(q+ 3, q, \gamma ).

By Claim 3.4, we have f(q + 1, q,1/4)  - f(q + 3, q,1/4) > 0 for all q \geq 5. Since for
fixed q and m, f(m,q, \gamma ) is continuous as a function of \gamma on [0,1/4], then

f(q+ 1, q, \gamma ) - f(q+ 3, q, \gamma )> 0

for all \gamma sufficiently close to 1/4. Therefore,\sum 
S:| S| \in \{ \lceil q/2\rceil ,\lfloor q/2\rfloor \} 

\beta S \geq  - f(q+ 3, q, \gamma )

 - f(q+ 3, q, \gamma ) + f(q+ 1, q, \gamma )

=

log

\biggl( 
q+3\surd 
q2 - 1

\biggr) 
 - 2
\sqrt{} 

q+3
q  - 

\surd 
1 - 4\gamma 
2 log

\Bigl( 
\lceil q/2\rceil 
\lfloor q/2\rfloor 

\Bigr) 
 - 4\gamma + 3

log
\Bigl( 

q+3
q+1

\Bigr) 
+ 2

\Bigl( \sqrt{} 
q+1
q  - 

\sqrt{} 
q+3
q

\Bigr) 
=: \mu (q, \gamma ).

Let

A= log

\biggl( 
q+ 3

q+ 1

\biggr) 
+ 2

\biggl( \sqrt{} 
q+ 1

q
 - 
\sqrt{} 
q+ 3

q

\biggr) 
.
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2532 MELISSA M. FUENTES

Then

d

d\gamma 
\mu (q, \gamma ) =

1

A

\left(  log
\Bigl( 

\lceil q/2\rceil 
\lfloor q/2\rfloor 

\Bigr) 
\surd 
1 - 4\gamma 

 - 4

\right)  .

Since for all q\geq 5 we have A< 0 and

log
\Bigl( 

\lceil q/2\rceil 
\lfloor q/2\rfloor 

\Bigr) 
\surd 
1 - 4\gamma 

 - 4> 0

for \gamma \leq 1/4 sufficiently close to 1/4, then d
d\gamma \mu (q, \gamma )< 0 and

\mu (q, \gamma )\geq \mu (q,1/4) =

log

\biggl( 
q+3\surd 
q2 - 1

\biggr) 
 - 2
\sqrt{} 

q+3
q + 2

log
\Bigl( 

q+3
q+1

\Bigr) 
+ 2

\Bigl( \sqrt{} 
q+1
q  - 

\sqrt{} 
q+3
q

\Bigr) (3.18)

for all q\geq 5 and \gamma \leq 1/4 sufficiently close to 1/4.
Note that \mu (5,1/4) \approx 0.768. We prove the following claim for \mu (q,1/4) when

q\geq 7.

Claim 3.5. For all q\geq 7, \mu (q,1/4)\geq 4/5.

Proof. We will prove that, for all q\geq 7,

log

\biggl( 
q+3\surd 
q2 - 1

\biggr) 
 - 2
\sqrt{} 

q+3
q + 2

log
\Bigl( 

q+3
q+1

\Bigr) 
+ 2

\Bigl( \sqrt{} 
q+1
q  - 

\sqrt{} 
q+3
q

\Bigr) \geq 4

5
.(3.19)

Note that the denominator of the left side of (3.19) is negative for all q \geq 7.
Therefore, proving (3.19) is equivalent to showing that

2

\sqrt{} 
q+ 3

q
 - 2 log

\sqrt{} 
q+ 3

q
+ 8

\sqrt{} 
q+ 1

q
 - 3 log

\sqrt{} 
q+ 1

q
 - 5 log

\sqrt{} 
q

q - 1
 - 10\geq 0.

With the substitution q= 1
x , it suffices to prove that, for all x\in [0,1/7],

F (x) := 2
\surd 
1 + 3x - log(1 + 3x) + 8

\surd 
1 + x - 3

2
log(1 + x) +

5

2
log(1 - x) - 10\geq 0.

We have

F \prime (x) =
3\surd 

1 + 3x
 - 3

1 + 3x
+

4\surd 
1 + x

 - 3

2(1 + x)
 - 5

2(1 - x)
,

F \prime \prime (x) = - 9

2(1 + 3x)3/2
+

9

(1 + 3x)2
 - 2

(1 + x)3/2
+

3

2(1 + x)2
 - 5

2(1 - x)2
,

and

F \prime \prime \prime (x) =
81

4(1 + 3x)5/2
 - 54

(1 + 3x)3
+

3

(1 + x)5/2
 - 3

(1 + x)3
 - 5

(1 - x)3
.
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MAXIMUM NUMBER OF COLORINGS OF TUR\'AN GRAPHS 2533

We have, for all x\in [0,1/7],

F \prime \prime \prime (x)\leq 
\biggl( 

81

4(1 + 3x)2
 - 54

(1 + 3x)3

\biggr) 
+

\biggl( 
3

(1 + x)2
 - 3

(1 + x)3
 - 5

(1 + x)3

\biggr) 
=

27(9x - 5)

4(1 + 3x)3
+

3x - 5

(1 + x)3
< 0.

Note that F \prime \prime (0) > 0 and F \prime \prime (1/7) < 0. Thus, there exists x0 \in (0,1/7) such that
F \prime \prime (x0) = 0, F \prime \prime (x)> 0 for x\in [0, x0), and F

\prime \prime (x)< 0 for x\in (x0,1/7]. Since F
\prime (0) = 0

and F \prime (1/7)< 0, there exists x1 \in (x0,1/7) such that F \prime (x1) = 0, F \prime (x)> 0 on (0, x1),
and F \prime (x) < 0 on (x1,1/7). Note that F (0) = 0 and F (1/7) > 0. Thus, F (x) \geq 0 on
[0,1/7] and (3.19) holds.

Therefore, by (3.18) and (3.19), we have

\sum 
S:| S| =\lfloor q/2\rfloor ,\lceil q/2\rceil 

\beta S \geq 

\Biggl\{ 
0.76 if q= 5,

0.80 if q\geq 7,

as long as \bfitbeta \in FEASq(\gamma ) for \gamma \leq 1/4 sufficiently close to 1/4, as desired.

We are ready to embark on the proof of Theorem 3.1. We use the following
approach:

(i) Assume that \bfitbeta \in FEASq(\gamma ) is a solution of OPT for odd q \geq 5. Then since
the vector \bfitalpha defined in the statement of Theorem 3.1 is also a feasible vector,
we must have OBJq(\bfitbeta )\geq OBJq(\bfitalpha ).

(ii) By Lemma 3.3, (3.11) holds, which implies that suppq(\bfitbeta ) must have at least
one set of size \lceil q/2\rceil or \lfloor q/2\rfloor . Additionally, by Theorem 2.8, suppq(\bfitbeta ) con-
tains at most one set of size \lceil q/2\rceil and at most two sets of size \lfloor q/2\rfloor . There-
fore, we divide our argument into five disjoint cases.
The support of \bfitbeta contains the following:

Case 1: no set of size \lceil q/2\rceil and exactly one set of size \lfloor q/2\rfloor , or vice versa.
Case 2: no set of size \lceil q/2\rceil and exactly two sets of size \lfloor q/2\rfloor .
Case 3: exactly one set A of size \lceil q/2\rceil , a set B of size \lfloor q/2\rfloor , but not Ac.
Case 4: exactly one set A of size \lceil q/2\rceil and Ac, and | suppq(\bfitbeta )| > 2.
Case 5: exactly one set A of size \lceil q/2\rceil and Ac only.

We show that Cases 1, 2, 3, and 4 are impossible and conclude that \bfitbeta must fall
into Case 5. Then we show that \bfitbeta must be of the same form as \bfitalpha in Theorem 3.1.

Proof of Theorem 3.1. Throughout the proof we will be making a series of claims
which hold for all \gamma sufficiently close to 1/4. Suppose that \bfitbeta \in FEASq(\gamma ) is a solution
of OPT for odd q\geq 5. Then

OBJq(\bfitbeta )\geq OBJq(\bfitalpha ),(3.20)

where \bfitalpha is a vector as defined in the statement of Theorem 3.1, and by Lemma 3.3,

\sum 
S:| S| =\lfloor q/2\rfloor ,\lceil q/2\rceil 

\beta S \geq \psi (q) =

\Biggl\{ 
0.76 if q= 5,

0.80 if q\geq 7.
(3.21)

Let us recall our constraints for feasible vectors. We have

Vq(\bfitbeta ) =
\sum 
S

\beta S = 1(3.22)
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2534 MELISSA M. FUENTES

and

1 - 2\gamma \geq 1 - 2Eq(\bfitbeta ) =
\sum 

(B,S):B\cap S \not =\emptyset 

\beta B\beta S(3.23)

by (3.1).
As was explained above, we proceed with our five cases.

Case 1: The support of \bfitbeta contains no set of size \lceil q/2\rceil and exactly one set of size
\lfloor q/2\rfloor , or vice versa.

Let S be the only set of size \lfloor q/2\rfloor in suppq(\bfitbeta ), and suppose that no sets of size
\lceil q/2\rceil are present in suppq(\bfitbeta ). Then by (3.21), \beta S \geq \psi (q), and using (3.23), we have

\psi (q)2 \leq \beta 2
S \leq 1 - 2Eq(\bfitbeta )\leq 1 - 2\gamma .

However, as \gamma \rightarrow 0.25 - , note that \psi (5)2 \rightarrow 0.762 \geq 0.57, \psi (q)2 \rightarrow 0.82 = 0.64 for q\geq 7,
and 1 - 2\gamma \rightarrow 0.5. Therefore, the inequality above cannot hold for all \gamma sufficiently
close to 1/4. Thus, \bfitbeta /\in FEASq(\gamma ), which is a contradiction.

Exactly the same argument holds if S is the only set of size \lceil q/2\rceil in suppq(\bfitbeta ) and
there are no sets of size \lfloor q/2\rfloor in suppq(\bfitbeta ). In either subcase we obtain a contradiction,
and therefore, this entire case is impossible.

For Cases 2, 3, and 4 we apply the results from [11] that were stated in section 2.
Case 2: The support of \bfitbeta contains no set of size \lceil q/2\rceil and exactly two sets of size
\lfloor q/2\rfloor .

Let S1 and S2 be the only two sets of size \lfloor q/2\rfloor in suppq(\bfitbeta ). By Theorem 2.8,
we have S1 \cap S2 = \emptyset . Then Theorem 2.8 implies that we have only two possibilities
for suppq(\bfitbeta ), which we consider below.
Subcase 2.1: suppq(\bfitbeta ) = \{ S1, S2, (S1 \cup S2)

c\} .
Since \beta S1

+ \beta S2
< 1, we have

OBJq(\bfitbeta ) = log (\lfloor q/2\rfloor ) (\beta S1
+ \beta S2

)

<
1

2
log (\lceil q/2\rceil \cdot \lfloor q/2\rfloor ) +

\surd 
1 - 4\gamma 

2
log

\biggl( 
\lceil q/2\rceil 
\lfloor q/2\rfloor 

\biggr) 
for all q\geq 5

=OBJq(\bfitalpha ).

However, this contradicts (3.20), and thus, this case is impossible.
Subcase 2.2: suppq(\bfitbeta ) = \{ S1, S2, S1 \cup S2, (S1 \cup S2)

c\} .
In this case, the entries of \bfitbeta are subject to the following constraints:

\beta S1
+ \beta S2

+ \beta S1\cup S2
+ \beta (S1\cup S2)c = 1,(3.24)

(\beta S1\cup S2
+ \beta S1

+ \beta S2
)2  - 2\beta S1

\beta S2
< 1 - 2\gamma ,(3.25)

\beta S1
+ \beta S2

\geq \psi (q),(3.26)

where \beta S1
> 0, \beta S2

> 0, \beta S1\cup S2
> 0, and \beta (S1\cup S2)c > 0. Solving (3.25) for \beta S1\cup S2

, we
obtain

\beta S1\cup S2
\leq 
\sqrt{} 

1 - 2\gamma + 2\beta S1
\beta S2

 - (\beta S1
+ \beta S2

),

noting that 1 - 2\gamma + 2\beta S1
\beta S2

\geq 0 for any \gamma \leq 1/4. Let t= \beta S1
+ \beta S2

. Then by (3.24)
and (3.25), we have \psi (q)\leq t\leq 1. Since 2\beta S1

\beta S2
\leq t2/2, we have

\beta S1\cup S2
\leq 
\sqrt{} 
1 - 2\gamma + t2/2 - t.
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MAXIMUM NUMBER OF COLORINGS OF TUR\'AN GRAPHS 2535

Thus,

OBJq(\bfitbeta ) = log (\lfloor q/2\rfloor ) t+ log(q - 1)\beta S1\cup S2

\leq log

\biggl( 
q - 1

2

\biggr) 
t+ log(q - 1)(

\sqrt{} 
1 - 2\gamma + t2/2 - t)

\leq  - log(2)t+ log(q - 1)
\sqrt{} 
1 - 2\gamma + t2/2 =: \lambda (t, q, \gamma ).

We will maximize \lambda (t, q, \gamma ) with respect to t. Note that 2t2  - 8\gamma + 4\geq 0 for \gamma \leq 1/4,
and hence,

d\lambda 

dt
= - log(2) +

log(q - 1) t\sqrt{} 
2t2  - 8\gamma + 4

\geq 0

when

t\geq 

\sqrt{} 
log(2) (4 - 8\gamma )

log(q - 1)2  - 2 log(2)2
=: \tau (q, \gamma ).

Let us first consider when q= 5. Note that

\tau (5, \gamma )> 0.76 =\psi (5)

for all \gamma \leq 1/4. Thus, \lambda (t,5, \gamma ) is decreasing with respect to t on [\psi (5), \tau (5, \gamma )) and is
increasing with respect to t on [\tau (5, \gamma ),1]. Thus,

OBJ5(\bfitbeta )\leq max\{ \lambda (\psi (5),5, \gamma ), \lambda (1,5, \gamma )\} .

Note that

lim
\gamma \rightarrow 1

4
 - 
\lambda (\psi (5),5, \gamma ) = \lambda (\psi (5),5,1/4) = - log(2) \cdot 0.76 + log(4)

\sqrt{} 
1/2 + (0.76)2/2\approx 0.70

and

lim
\gamma \rightarrow 1

4
 - 
\lambda (1,5, \gamma ) = \lambda (1,5,1/4) = log(2)\approx 0.69.

Since \lambda (t,5, \gamma ) is continuous with respect to \gamma , then

OBJ5(\bfitbeta )\leq \lambda (\psi (5),5, \gamma ) = - log(2) \cdot 0.76 + log(4)
\sqrt{} 
1 - 2\gamma + (0.76)2/2

for \gamma sufficiently close to 1/4. Since

lim
\gamma \rightarrow 1

4
 - 

1

2
log(6) +

\surd 
1 - 4\gamma 

2
log

\biggl( 
3

2

\biggr) 
=

1

2
log(6)\approx 0.89,

then

OBJ5(\bfitbeta )\leq \lambda (\psi (5),5, \gamma )<
1

2
log(6) +

\surd 
1 - 4\gamma 

2
log

\biggl( 
3

2

\biggr) 
=OBJ5(\bfitalpha )

for \gamma sufficiently close to 1/4. We have contradicted (3.20), and hence, this subcase
is impossible for q= 5.
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2536 MELISSA M. FUENTES

Now suppose that q\geq 7. Note that

lim
\gamma \rightarrow 1

4
 - 
\tau (q, \gamma ) = \tau (q,1/4) =

\sqrt{} 
2 log(2)

log(q - 1)2  - 2 log(2)2
\leq 0.80 =\psi (q)

for all q\geq 7. Since \tau (q, \gamma ) is decreasing with respect to \gamma as \gamma \rightarrow 0.25 - , then

\tau (q, \gamma )\leq \psi (q)

for all \gamma \leq 1/4 and q \geq 7. Thus, \lambda (t, q, \gamma ) is increasing on the interval [\psi (q),1] with
respect to t, and hence,

OBJq(\bfitbeta )\leq \lambda (1, q, \gamma ).

Notice that

lim
\gamma \rightarrow 1

4
 - 
\lambda (1, q, \gamma ) = \lambda (1, q,1/4) =

log(q - 1)

2
<

1

2
log (\lceil q/2\rceil \cdot \lfloor q/2\rfloor ) ,

where the last inequality holds for all q\geq 7. Thus, for \gamma sufficiently close to 1/4

OBJq(\bfitbeta )<
1

2
log (\lceil q/2\rceil \cdot \lfloor q/2\rfloor ) +

\surd 
1 - 4\gamma 

2
log

\biggl( 
\lceil q/2\rceil 
\lfloor q/2\rfloor 

\biggr) 
=OBJq(\bfitalpha ).

However, this contradicts (3.20), and thus, this subcase is also impossible for q\geq 7.
Case 3: The support of \bfitbeta contains exactly one set A of size \lceil q/2\rceil , a set B of size
\lfloor q/2\rfloor , but not Ac.

Since Ac /\in suppq(\bfitbeta ), then A\cap B \not = \emptyset . If B is the only set of size \lfloor q/2\rfloor in suppq(\bfitbeta ),
then \beta A + \beta B \geq \psi (q), and hence, by (3.23), we have

\psi (q)2 \leq (\beta A + \beta B)
2 \leq 1 - 2Eq(\bfitbeta )\leq 1 - 2\gamma .

However, as was shown in Case 1, the inequality above cannot hold for all \gamma sufficiently
close to 1/4. Thus, \bfitbeta /\in FEASq(\gamma ), a contradiction.

We may assume that there exists another set C \in suppq(\bfitbeta ) \setminus \{ B\} that satisfies
| C| = \lfloor q/2\rfloor . By Theorem 2.8, B \cap C = \emptyset and B and C are the only sets of size \lfloor q/2\rfloor 
in suppq(\bfitbeta ). Since B and C are disjoint, but they each intersect with the set A,
Theorem 2.8 also implies that A=B \cup C and that

suppq(\bfitbeta ) = \{ A,B,C, (B \cup C)c\} .

However, then we would have (q+1)/2 = | A| = | B| + | C| = q - 1, which is impossible.
Therefore, this entire case is impossible.
Case 4: The support of \bfitbeta contains exactly one set A of size \lceil q/2\rceil and Ac, and
| suppq(\bfitbeta )| > 2.

Since A,Ac \in suppq(\bfitbeta ) and | suppq(\bfitbeta )| > 2, then any other set in suppq(\bfitbeta ) must
intersect A or Ac. Recall, by Observation 2.7, that we have

| suppq(\bfitbeta )| > \lceil 1/(1 - 2\gamma )\rceil + 1= 3,

since \lceil 1/(1  - 2\gamma )\rceil = 2 for \gamma sufficiently close to 1/4. One set in suppq(\bfitbeta ) must be
the union of precisely two other set in suppq(\bfitbeta ) by Theorem 2.8. Thus, the only
possibility is that

suppq(\bfitbeta ) = \{ A,Ac,A1,A2\} ,

where A1 and A2 are disjoint sets which form a 2-partition of A or Ac.
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MAXIMUM NUMBER OF COLORINGS OF TUR\'AN GRAPHS 2537

Without loss of generality, assume that A1 and A2 form a 2-partition of A. Then
the entries of \bfitbeta are subject to the following constraints:

\beta A + \beta Ac + \beta A1
+ \beta A2

= 1,(3.27)

\beta 2
A + \beta 2

Ac + \beta 2
A1

+ \beta 2
A2

+ 2\beta A(\beta A1
+ \beta A2

)\leq 1 - 2\gamma ,(3.28)

\beta A + \beta Ac \geq \psi (q),(3.29)

where \beta A > 0, \beta Ac > 0, \beta A1
> 0, and \beta A2

> 0. We can combine (3.27) and (3.28) by
substituting \beta Ac = 1 - \beta A  - \beta A1

 - \beta A2
into (3.28) to obtain

1 - 2\gamma \geq \beta 2
A + \beta 2

Ac + \beta 2
A1

+ \beta 2
A2

+ 2\beta A(\beta A1 + \beta A2)

=
1

2
(2\beta A + 2\beta A1

+ 2\beta A2
 - 1)2 +

1

2
 - \beta 2

A1
 - \beta 2

A2
 - 2\beta A1

\beta A2
.(3.30)

By solving for \beta A in (3.30) we obtain

\beta A \leq 

\sqrt{} 
1 - 4\gamma + 2(\beta 2

A1
+ \beta 2

A2
+ 2\beta A1

\beta A2
) + 1

2
 - (\beta A1 + \beta A2).

Let t= \beta A1 + \beta A2 . Then 0< t\leq 1 - \psi (q) by (3.27) and (3.29). Note that

\beta 2
A1

+ \beta 2
A2

+ 2\beta A1
\beta A2

\leq t2,

and hence, we have

\beta A \leq 
\sqrt{} 
1 - 4\gamma + 2t2 + 1

2
 - t.

Thus,

OBJq(\bfitbeta )\leq log (\lfloor q/2\rfloor ) (\beta Ac + \beta A1 + \beta A2) + log (\lceil q/2\rceil )\beta A

= log

\biggl( 
q - 1

2

\biggr) 
+ log

\biggl( 
\lceil q/2\rceil 
\lfloor q/2\rfloor 

\biggr) 
\beta A by (3.27)

\leq log

\biggl( 
q - 1

2

\biggr) 
+ log

\biggl( 
\lceil q/2\rceil 
\lfloor q/2\rfloor 

\biggr) \Biggl( \sqrt{} 
1 - 4\gamma + 2t2 + 1

2
 - t

\Biggr) 
=: \rho (t, q, \gamma ).

We will maximize \rho (t, q, \gamma ) with respect to t. Note that
\sqrt{} 
1 - 4\gamma + 2t2 \geq 0 for \gamma \leq 1/4,

and hence,

d\rho 

dt
=

t\sqrt{} 
1 - 4\gamma + 2t2

+ 1< 0

for t >
\surd 
4\gamma  - 1. Since 4\gamma  - 1\leq 0< t, then \rho (t, q, \gamma ) is always decreasing with respect

to t on [0,1 - \psi (q)]. Thus,

OBJq(\bfitbeta )<\rho (0, q, \gamma ) =
1

2
log (\lceil q/2\rceil \cdot \lfloor q/2\rfloor ) +

\surd 
1 - 4\gamma 

2
log

\biggl( 
\lceil q/2\rceil 
\lfloor q/2\rfloor 

\biggr) 
=OBJq(\bfitalpha ),

which contradicts (3.20). Therefore, this case is impossible.
Case 5: The support of \bfitbeta contains exactly one set A of size \lceil q/2\rceil and Ac only.
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2538 MELISSA M. FUENTES

For any \gamma \leq 1/4, define the roots of the equation x(1 - x) = \gamma by

M(\gamma )+ =
1+

\surd 
1 - 4\gamma 

2
and M(\gamma ) - =

1 - 
\surd 
1 - 4\gamma 

2
.

In this case, we have suppq(\bfitbeta ) = \{ A,Ac\} . Then by (3.22), we have

\beta A + \beta Ac = 1,

and we also have

Eq(\bfitbeta ) = \beta A\beta Ac = \beta A(1 - \beta A)\geq \gamma ,

which implies that M(\gamma ) - \leq \beta A \leq M(\gamma )+. Similarly, we can also show that M(\gamma ) - \leq 
\beta Ac \leq M(\gamma )+. Therefore, it is clear that in this case, we have

OBJq(\bfitbeta )\leq log

\biggl( 
q - 1

2

\biggr) 
M(\gamma ) - + log

\biggl( 
q+ 1

2

\biggr) 
M(\gamma )+ =OBJq(\bfitalpha ),

where equality holds everywhere if and only if \beta Ac = M(\gamma ) - and \beta A = M(\gamma )+.
That is, equality holds if and only if \bfitbeta is of the same form as \bfitalpha in the statement of
Theorem 3.1.

We have considered all possible cases for the solution vector \bfitbeta and have shown
that the only possibility is that \bfitbeta must be of the same form as the vector \bfitalpha defined
in the statement of Theorem 3.1. Our proof is complete.

Corollary 3.6. Let n be a positive integer. If \bfitalpha solves OPTq(1/4) for odd q\geq 5,
then the graph G\bfitalpha (n) is isomorphic to T2(n).

Proof. If\bfitalpha is a solution of OPTq(1/4), then according to Theorem 3.1, suppq(\bfitalpha ) =
\{ A,Ac\} , where A\subseteq [q] such that | A| = \lceil q/2\rceil , and \alpha A = \alpha Ac = 1/2. Then by Construc-
tion \bfitG \bfitalpha (\bfitn ), the graph G\bfitalpha (n) is a complete 2-partite graph with parts VA and VAc ,
where | VA| = \lfloor n/2\rfloor and | VAc | = \lceil n/2\rceil , or vice versa. Therefore, G\bfitalpha (n)\sim =K\lfloor n/2\rfloor ,\lceil n/2\rceil ,
which is isomorphic to T2(n).

4. Approximate version of Theorem 1.2. An (n,m)-graph is a graph with
precisely n vertices and m edges. This section is dedicated to proving an ``approxi-
mate"" version of Theorem 1.2. This version is nearly the same as Theorem 1.2, but
has an additional requirement: namely, that an (n, t2(n))-graph G must be \delta n2-close
to T2(n) for sufficiently small \delta > 0. That is, T2(n) ``locally maximizes"" the number
of q-colorings among the class of (n, t2(n))-graphs for odd q\geq 5.

The main result of this section is as follows.

Theorem 4.1. There exists a \delta > 0 such that the following holds for sufficiently
large n. Let q \geq 2 be an odd integer, and let G be an (n, t2(n))-graph such that G is
\delta n2-close to T2(n). Then G has at most as many q-colorings as T2(n), with equality
holding if and only if G is isomorphic to T2(n).

Intuitively, Theorem 4.1 states that if a graph is ``close"", with respect to edit
distance, in structure to T2(n), then the number of its q-colorings is at most PT2(n)(q)
for odd q\geq 5.

The following two results will be referenced throughout the proof of Theorem 4.1.
The first result, Lemma 4.2, states the existence of a particular partition of the vertex
set of an (n, t2(n))-graph that is \delta n2-close T2(n).
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MAXIMUM NUMBER OF COLORINGS OF TUR\'AN GRAPHS 2539

Lemma 4.2. Let \delta > 0. If G is an (n, t2(n))-graph that is \delta n2-close to T2(n), then
there exists a partition A1 \cdot \cup A2 = V (G) such that e(G[A1,A2])\geq t2(n) - \delta 

2n
2.

Proof. Suppose that T2(n) has vertex set partition A1 \cdot \cup A2 = V (T2(n)). Since G
is \delta n2-close to T2(n), then by definition, V (G) = V (T2(n)).

First observe that

E(G[A1,A2]) =E(G)\cap E(T2(n)) = (E(G)\cup E(T2(n))) \setminus (E(G)\bigtriangleup E(T2(n))),(4.1)

where the first equality holds since T2(n) has all possible edges between the parts A1

and A2. By taking the cardinalities of each set in (4.1) we have

e(G[A1,A2])\geq 2t2(n) - e(G[A1,A2]) - \delta n2.

Thus, we have our desired result.

We will need the following upper bound on PG(q) from [4] later.

Lemma 4.3 ([4]). Let G be an (n,m)-graph, and let q\geq 2 be an integer. Then

PG(q)\leq 
\biggl( 
1 - 1

q

\biggr) \lceil (
\surd 
1+8m - 1)/2\rceil 

qn \leq 
\biggl( 
1 - 1

q

\biggr) \surd 
m

qn.

We will now embark on the proof of Theorem 4.1. Our approach is very similar
to the one used by Norine [12] in his proof of Lemma 4.2, with some adjustments,
since q is not an even integer.

Proof of Theorem 4.1. Throughout the proof we will be making a series of claims
which hold for positive \delta , sufficiently small as a function of q, and for n, sufficiently
large as a function of q and \delta . The eventual choice of \delta and n will be implicitly made
so that all of our claims are valid.

Let G be an (n, t2(n))-graph, where n\geq 2. Suppose, to the contrary, that G has
more q-colorings than T2(n). By Lemma 4.2, there exists a partition A1 \cdot \cup A2 = V (G)
such that e(G[A1,A2]) \geq t2(n)  - \delta 

2n
2. Assume that the pair (A1,A2) is chosen to

maximize e(G[A1,A2]). Let \delta 
\prime := 2n - 1

\bigm| \bigm| | A1|  - n
2

\bigm| \bigm| = 2n - 1
\bigm| \bigm| | A2|  - n

2

\bigm| \bigm| . Then
e(G[A1,A2])\leq 

\Bigl( n
2

\Bigr) 2
 - 
\biggl( 
n\delta \prime 

2

\biggr) 2

\leq t2(n) +
1

4
 - 1

2

\biggl( 
n\delta \prime 

2

\biggr) 2

.

Then for sufficiently small \delta and sufficiently large n, (\delta \prime n/2)2 \leq 1/2+ \delta n2 \leq (q/2)\delta n2,
and thus, \delta \prime \leq 

\sqrt{} 
(q/2)\delta . Therefore, it suffices to show that the conclusion of the

lemma holds as long as not only \delta , but max\{ \delta , \delta \prime \} , is sufficiently small. To simplify
the notation at the expense of overloading it, we will use \delta in the remainder of the
proof to denote max\{ \delta , \delta \prime \} . In particular, we have | | Ai|  - n/2| \leq (\delta n)/2 for all i\in [2]
and for sufficiently small \delta .

Let \epsilon :=
\surd 
\delta . We say that a vertex v \in V (G) is good if dAi

(v)\geq (1 - \epsilon ) | Ai| for the
i\in [2] such that v /\in Ai; that is, v has ``many"" neighbors in the part Ai that does not
contain v. Otherwise, we say that v is bad. Let B denote the set of bad vertices of G.
By counting the edges in G[A1,A2], where G denotes the complementary graph of G,
we obtain

\epsilon (1 - \delta )
n

2
| B| \leq e(G[A1,A2]) = t2(n) - e(G[A1,A2])\leq 

\delta 

2
n2,

and hence, | B| \leq \epsilon 
1 - 2\epsilon 2n\leq 2\epsilon n for sufficiently small \epsilon (and hence, \delta ).
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2540 MELISSA M. FUENTES

Let f : V (G)\rightarrow [q] be a q-coloring of G. For each i\in [2] define

\scrR f (i) :=
\bigl\{ 
c\in [q] :

\bigm| \bigm| f - 1(c)\cap Ai

\bigm| \bigm| > \epsilon | Ai| 
\bigr\} 
,

i.e., \scrR f (i) is the set of colors which occur relatively frequently in Ai under the coloring
f . We say that each color in \scrR f (i) is an essential color in Ai.

We make two observations about \scrR f (i). First, note that we can ensure that
\scrR f (i) \not = \emptyset for each i \in [2] by ensuring that | Ai| =

\sum 
c\in [q]

\bigm| \bigm| f - 1(c)\cap Ai

\bigm| \bigm| > q\epsilon | Ai| by
choosing \epsilon < 1/q. Second, the sets \scrR f (1) and \scrR f (2) are disjoint. Note that for every
essential color c \in \scrR f (i) we have f - 1(c) \subseteq Ai \cup B. Otherwise, if say, i = 1, and
there were some v \in A2 \setminus B such that f(v) = c, then since dA1

(v) \geq (1 - \epsilon ) | A1| , the
vertex v must be adjacent to some vertex in A1 with color c, contradicting that f is a
q-coloring. Therefore, we see that there exists at least one essential color in each Ai,
and that A1 and A2 cannot share essential colors.

Let us define the vector \bfscrR f := (\scrR f (1),\scrR f (2)). Given another vector \bfscrR =
(\scrR 1,\scrR 2) such that the components \scrR 1 and \scrR 2 are disjoint nonempty subsets of
[q], let

\scrP G(\bfscrR ) := | \{ f : V (G)\rightarrow [q] :\scrR i is the set of essential colors in Ai for each i\in [2]\} | .

We will bound \scrP G(\bfscrR ) in two distinct cases, each of which is based upon a comparison
of the cardinalities of the sets \scrR 1 and \scrR 2.
Case 1: The components of \bfscrR = (\scrR 1,\scrR 2) that satisfy

(| \scrR 1| , | \scrR 2| ) /\in \{ (\lfloor q/2\rfloor , \lceil q/2\rceil ) , (\lceil q/2\rceil , \lfloor q/2\rfloor )\} .

We can estimate \scrP G(\bfscrR ) in the following way: (i) Allow the vertices of B to be
colored arbitrarily, (ii) allow | Ri| choices of colors for each of the vertices in Ai, (iii)
account for the number of subsets of Ai which will not be colored with any of the | \scrR i| 
essential colors, and (iv) color the subset of Ai chosen in (iii). By estimating \scrP G(\bfscrR )
this way we obtain

\scrP G(\bfscrR )

\leq q| B| 

\Biggl( 
2\prod 

i=1

| \scrR i| | Ai| \cdot 2
\biggl( 

| Ai| 
(q - | \scrR i| )\epsilon | Ai| 

\biggr) 
\cdot (q - | \scrR i| )(q - | \scrR i| )\epsilon | Ai| 

\Biggr) 
\leq 4 \cdot q2\epsilon n \cdot ((\lceil q/2\rceil + 1)(\lfloor q/2\rfloor  - 1))

(1+\delta )n
2 (e/\epsilon )

q\epsilon n

= 4((\lceil q/2\rceil +1)(\lfloor q/2\rfloor  - 1))
n/2 \cdot exp

\biggl( \biggl( 
\delta 

2
log

\biggl( 
q2 - 9

4

\biggr) 
+2\epsilon log(q)+q\epsilon log (e/\epsilon )

\biggr) 
n

\biggr) 
<

1

3q
(\lceil q/2\rceil \cdot \lfloor q/2\rfloor )(n - 2)/2

,

for \epsilon (and hence, \delta ) sufficiently small and n sufficiently large, since

exp

\biggl( \biggl( 
\delta 

2
log

\biggl( 
q2  - 9

4

\biggr) 
+ 2\epsilon log(q) + q\epsilon log (e/\epsilon )

\biggr) 
n

\biggr) 
\rightarrow 1

as \epsilon =
\surd 
\delta \rightarrow 0. It follows that\sum 

\bfscrR 
\scrP G(\bfscrR )<

\sum 
\bfscrR 

1

3q
(\lceil q/2\rceil \cdot \lfloor q/2\rfloor )(n - 2)/2 \leq (\lceil q/2\rceil \cdot \lfloor q/2\rfloor )(n - 2)/2

,(4.2)
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MAXIMUM NUMBER OF COLORINGS OF TUR\'AN GRAPHS 2541

where the summation is taken over all \bfscrR = (\scrR 1,\scrR 2) such that

(| \scrR 1| , | \scrR 2| ) /\in \{ (\lfloor q/2\rfloor , \lceil q/2\rceil ), (\lceil q/2\rceil , \lfloor q/2\rfloor )\} .

Case 2: The components of \bfscrR = (\scrR 1,\scrR 2) that satisfy

(| \scrR 1| , | \scrR 2| )\in \{ (\lfloor q/2\rfloor , \lceil q/2\rceil ) , (\lceil q/2\rceil , \lfloor q/2\rfloor )\} .

In this case, we will bound \scrP G(\bfscrR ) when \bfscrR corresponds to a partition of [q] into
two parts, one of which is roughly of size q/2. Note that under any such q-coloring f ,
all of the vertices in Ai\setminus B are only colored with colors from \scrR f (i). Otherwise, if there
is a q-coloring f such that \bfscrR f = \bfscrR and we have, for example, a vertex v \in A1 \setminus B
such that f(v) = c for some c\in \scrR f (2), then since dA2

(v)\geq (1 - \epsilon ) | A2| and there exist
more than \epsilon k vertices with color c in A2, then v would be adjacent to some vertex of
color c in A2, a contradiction.

Suppose first that there exists a vertex v \in V (G) such that dAi(v) \geq \delta 2/5 | Ai| 
for every i \in [2]. Suppose, without loss of generality, that v \in A1. We can estimate
\scrP G(\bfscrR ) in the following way: (i) Arbitrarily color the vertices of B with any of the
q colors; (ii) since f(v) \in \scrR f (1), arbitrarily color the neighbors of v in A1 \setminus B with
any of the available | \scrR f (1)|  - 1 colors in \scrR f (1) \setminus \{ f(v)\} ; (iii) arbitrarily color the
vertices in A1 \setminus B which are not neighbors of v using any of the colors in \scrR f (1); and
(iv) arbitrarily color the vertices in A2 using any of the colors in \scrR f (2). There are

| \scrR f (2)| A2 possibilities. By estimating \scrP G(\bfscrR ) this way we obtain

\scrP G(\bfscrR )\leq 2 \cdot q| B| (| \scrR f (1)|  - 1)dA1
(v) | \scrR f (1)| | A1|  - dA1

(v) | \scrR f (2)| | A2| 

\leq 2 \cdot q2\epsilon n
\biggl( 
\lceil q/2\rceil  - 1

\lceil q/2\rceil 

\biggr) \delta 2/5(1 - \delta )n/2

(\lfloor q/2\rfloor \lceil q/2\rceil )n/2+\delta n

<
1

2q
(\lfloor q/2\rfloor \lceil q/2\rceil )n/2

for sufficiently small \delta and sufficiently large n. Combining this with the previous
calculations from Case 1 we obtain \scrP G(\bfscrR )< 2 (\lfloor q/2\rfloor \lceil q/2\rceil )n/2, which is less than the
number of q-colorings of T2(n), a contradiction. Therefore, a vertex v as above does
not exist. It follows from the choice of the partition (A1,A2) that for every i\in [2] the
subgraph G[Ai] of G has maximum degree at most \delta 2/5n. Let ei := e(G[Ai \setminus B]) for
each i\in [2]. Then

2\sum 
i=1

\Bigl( 
ei + \delta 2/5n | B \cap Ai| 

\Bigr) 
\geq 

2\sum 
i=1

e(G[Ai]) = e(G) - e(G[A1,A2])\geq \epsilon (1 - \delta )
n

2
| B| .

It follows that e1+e2 \geq \delta 2/5 | B| n for sufficiently small \delta . Using Lemma 4.3 we obtain

\scrP G(\bfscrR )

\leq q| B| (\lfloor q/2\rfloor \lceil q/2\rceil )(1+\delta )n
2

2\prod 
i=1

\biggl( 
\lceil q/2\rceil  - 1

\lceil q/2\rceil 

\biggr) \surd 
ei

= (\lceil q/2\rceil \cdot \lfloor q/2\rfloor )(1+\delta )n
2 exp

\biggl( 
log(q) | B|  - log

\biggl( 
\lceil q/2\rceil 
\lfloor q/2\rfloor 

\biggr) \sqrt{} 
\delta 2/5 | B| n+ log (\lceil q/2\rceil \cdot \lfloor q/2\rfloor ) \delta 

2
n

\biggr) 
\leq (\lceil q/2\rceil \cdot \lfloor q/2\rfloor )

n
2 exp

\biggl( \biggl( 
log(q) - 10 - 1/2\delta  - 1/20 log

\biggl( 
\lceil q/2\rceil 
\lfloor q/2\rfloor 

\biggr) \biggr) 
| B| + log (\lceil q/2\rceil \cdot \lfloor q/2\rfloor ) \delta 

2
n

\biggr) 
.

If | B| \not = 0, then \scrP G(\bfscrR ) once again becomes negligible compared to (\lceil q/2\rceil \cdot 
\lfloor q/2\rfloor )n/2, as \delta approaches 0. It follows that | B| = 0. It suffices to assume that
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D
ow

nl
oa

de
d 

10
/2

5/
23

 to
 1

72
.5

8.
20

6.
16

0 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



2542 MELISSA M. FUENTES

G[A1,A2] is a complete bipartite graph. Indeed, if this were not the case, then there
exist nonadjacent vertices v1 \in A1 and v2 \in A2 and adjacent vertices x and y, either
both in A1 or both in A2. Let the graph G\prime :=G - xy + v1v2. If f is a q-coloring in
Case 2, then f(x) \not = f(y) and f(v1) \not = f(v2). Thus, we can apply the coloring f to the
graph G\prime to obtain a proper q-coloring of G\prime that satisfies the conditions of Case 2.
Therefore, \scrP G(\bfscrR ) \leq \scrP G\prime (\bfscrR ). We may repeat this process until all possible edges
between A1 and A2 are present. Then G\sim =K| A1| ,| A2| , and since t2(n) = e(G), then G
must be isomorphic to T2(n). Therefore, we have shown that any (n, t2(n))-graph G
which is \delta n2 close to T2(n) has at most as many q-colorings as T2(n), with equality
holding if and only if G is isomorphic to T2(n), provided that \delta is sufficiently small
and n is sufficiently large.

5. Proof of Theorem 1.2. We are ready to prove our main result, Theorem 1.2.
The proof combines our solution of OPT for odd q\geq 5 and Theorem 4.1, and uses a
similar approach to Norine's proof of his main result, Theorem 1.1, in [12].

Proposition 5.1 ([10]). If \bfitalpha \in FEASq(\gamma ) solves OPTq(\gamma ), then Eq(\bfitalpha ) = \gamma .

Proof of Theorem 1.2. We proceed by contradiction. Assume there exist an in-
creasing sequence of positive integers \{ ni\} \infty i=1 and a sequence of graphs \{ Hi\} \infty i=1 such
that Hi is a (ni, t2(ni))-graph, Hi is not isomorphic to T2(ni), and Hi has at least as
many q-colorings as any other (ni, t2(ni))-graph. Choose \epsilon > 0 so that a real num-
ber \gamma \in [1/4 - \epsilon ,1/4] and the conclusion of Theorem 3.1 holds. We apply Theorem
2.4 for \kappa = 1/4 and a sequence of positive real numbers \{ \delta i\} \infty i=1 with 0 < \delta i \leq \epsilon and
limi\rightarrow \infty \delta i = 0. By possibly restricting \{ ni\} \infty i=1 to a subsequence, we obtain a sequence
\{ \bfitalpha i\} \infty i=1 such that Hi is \delta in

2
i -close to the graph G\bfitalpha i

(ni), \bfitalpha i solves OPTq(\gamma i) for some
real number \gamma i such that \gamma i \in [1/4 - \epsilon ,1/4], and limi\rightarrow \infty \gamma i = 1/4.

Since \bfitalpha i \in FEASq(\gamma i) and FEASq(\gamma i) is a compact set, we may further restrict
our sequence \{ \bfitalpha i\} \infty i=1 (and hence, the sequences \{ ni\} and \{ \gamma i\} ) by assuming that the
\bfitalpha i's converge in the L1-norm to a vector \bfitalpha \ast with Eq(\bfitalpha 

\ast ) = \gamma \ast . Then by Theorem
3.1, for odd q\geq 5, we have

OBJq(\bfitalpha 
\ast ) - 1

2
log (\lceil q/2\rceil \cdot \lfloor q/2\rfloor )

= lim
i\rightarrow \infty 

\biggl[ 
OBJq(\bfitalpha i) - 

\biggl( 
1

2
log (\lceil q/2\rceil \cdot \lfloor q/2\rfloor ) +

\surd 
1 - 4\gamma i
2

log

\biggl( 
\lceil q/2\rceil 
\lfloor q/2\rfloor 

\biggr) \biggr) \biggr] 
= 0.

Therefore,

OBJq(\bfitalpha 
\ast ) =

1

2
log (\lceil q/2\rceil \cdot \lfloor q/2\rfloor ) .

Since \bfitalpha i solves OPTq(\gamma i), by Proposition 5.1, Eq(\bfitalpha i) = \gamma i. Since \{ \bfitalpha i\} \infty i=1 converges
to \bfitalpha \ast in the L1-norm, we have

1/4 = lim
i\rightarrow \infty 

\gamma i = lim
i\rightarrow \infty 

Eq(\bfitalpha i) = Eq(\bfitalpha 
\ast ) = \gamma \ast .

Then \gamma \ast = 1/4, and hence, by Theorem 3.1, \bfitalpha \ast solves OPTq(1/4). Then Corollary
3.6 tells us that the graph G\bfitalpha \ast (n) = T2(n) for every n.

Let \delta > 0 be chosen so that the conclusion of Theorem 4.1 holds. By Proposition
2.3, G\bfitalpha i

(ni) is \delta n2i /2-close to G\bfitalpha \ast (ni) = T2(ni) for sufficiently large i, since \bfitalpha i \rightarrow 
\bfitalpha \ast . We may assume that \delta i \leq \delta /2 for sufficiently large i since \delta i \rightarrow 0 as i \rightarrow \infty .
Consequently, as each Hi is \delta in

2
i -close to G\bfitalpha i(ni), then the edit distance between Hi

and G\bfitalpha \ast (ni) = T2(ni) is at most
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\delta 

2
n2i + \delta in

2
i \leq 

\delta 

2
n2i +

\delta 

2
n2i = \delta n2i .

That is, Hi is \delta n2i -close to T2(ni) for sufficiently large i. However, this contradicts
Theorem 4.1, finishing the proof of the theorem.

6. Concluding remarks and open problems. In section 1, we presented Con-
jecture 1.1 and stated that although several cases of the conjecture had been solved
for various ranges of r, q, and n, it was not true in general, as counterexamples were
discovered in [11]. Nonetheless, several cases of the conjecture remain open, one of
them being the following conjecture.

Conjecture 6.1. Let r and q be integers such that 2 \leq r \leq 9 and r \leq q. Then
for all n\geq r, the Tur\'an graph Tr(n) has more q-colorings than any other graph with
the same number of vertices and edges.

It seems that it may be difficult to resolve Conjecture 6.1 for all n \geq r. How-
ever, asymptotic versions (for n sufficiently large) may be more attainable by finding
solutions of OPT for 2\leq r\leq 9, q\geq r, and positive \gamma that satisfy \gamma \leq (q - 1)/(2q).
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