Section 3.9: Related Rates
Problem 1. A ladder 10 feet long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of 4 feet per second, how fast is the angle between the ladder and the ground changing when the bottom of the ladder is 6 feet from the wall?

$\theta(t)=$ angle between ladder \& ground after t sec.

GOAL: Find $\theta^{\prime}(t)$ when $x(t)=6 \mathrm{ft}$.

EQ. THAT RELATES. KNOWNS/UNKNOWNS

$$
\cos (\theta(t))=\frac{x(t)}{10}
$$

$$
-\sin (\theta(t)) \theta^{\prime}(t)=\frac{x^{\prime}(t)}{10}
$$

When $x(t)=6$, we have

$$
\Rightarrow \theta^{\prime}(t)=\frac{x^{\prime}(t)}{\underbrace{-\sin (\theta(t)) \cdot 10}_{?}}
$$

$$
\begin{aligned}
& y(t) \frac{10}{6} \Rightarrow y(t)=\sqrt{10^{2}-6^{2}}=8 \mathrm{ft} \\
& \Rightarrow \sin (\theta(t))=\frac{y(t)}{10}=\frac{8}{10} \\
& \text { when } x(t)=6 \mathrm{ft}
\end{aligned}
$$

$$
\text { Then } \begin{aligned}
\theta^{\prime}(t)=\frac{4}{-\frac{8}{10} \cdot 10} & =-\frac{4}{8} \\
& =-\frac{1}{2} \text { radians }
\end{aligned}
$$ second.

$V(t)=$ volume at time t

$$
\text { GIVEN: } V^{\prime}(t)=100 \mathrm{~cm}^{3} / \mathrm{sec}
$$

GOAL: Find $r^{\prime}(t)$ when $r(t)=25 \mathrm{~cm}$

$$
\left(\begin{array}{rl}
\text { if } \\
\text { diameter } & =50 \\
\Rightarrow \text { adieus } & =25
\end{array}\right)
$$

RELATING: $\quad V(t)=\frac{4}{3} \pi r^{3}(t) \quad$ (*not expected to know
EQ. volume of sphere by memory *)

$$
\begin{aligned}
V^{\prime}(t) & =\frac{4}{3} \pi 3 r^{2}(t) \cdot r^{\prime}(t) \\
\Rightarrow 100 & =4 \pi(25)^{2} r^{\prime}(t) \\
\Rightarrow r^{\prime}(t) & =\frac{100}{4 \pi(25)^{2}}=\frac{1}{25 \pi} \approx 0.0127 \mathrm{~cm} / \mathrm{sec} .
\end{aligned}
$$

Problem 3. A paper cup has the shape of a cone with height 10 cm and radius 3 cm (at the top). If water is poured into the cup at a rate of $2 \mathrm{~cm}^{3} / \mathrm{s}$, how fast is the water level rising when the water is 5 cm deep?

$$
\begin{aligned}
h(t)= & \text { height of water at } t \text { sec. } \\
r(t)= & \text { radius of the water } \\
& \text { surface at time } t \\
V(t)= & \text { volume of water at time } t .
\end{aligned}
$$

$$
V^{\prime}(t)=2 \mathrm{~cm}^{3} / \mathrm{sec} .
$$

GOAL: Find $h^{\prime}(t)$ when $h(t)=5 \mathrm{~cm}$.
RELATNG EQ.

$$
V(t)=\frac{1}{3} \pi r^{2}(t) \cdot h(t) \quad\binom{* \text { not expected to }}{\text { memorize volume of cone }}
$$

$$
\begin{aligned}
& V^{\prime}(t)=\frac{\pi}{3}\left(2 r(t) r^{\prime}(t) h(t)+r^{2}(t) \cdot h^{\prime}(t)\right) \\
& \text { Issue . We don't know } r^{\prime}(t)! \\
& \text { here... }
\end{aligned}
$$

$$
\begin{aligned}
& \text { This means we need to subs. } r(t) . \\
& \text { The two right } \\
& \text { triangles are } \\
& \text { similar Coth } \\
& \text { have the same } \\
& \text { angles) }
\end{aligned} \begin{aligned}
& \text { subs. into } V(t) \text { formula above } \\
& h(t)=\frac{3}{10} \Rightarrow r(t)=\frac{3 h(t)}{10} \\
& V(t)=\frac{\pi}{3}\left(\frac{3 h(t)}{10}\right)^{2} \cdot h(t) \\
& \text { so } V(t)=\frac{3 \pi}{100} h^{3}(t)
\end{aligned}
$$

diff. w.r.t. t

$$
V^{\prime}(t)=\frac{9 \pi}{100} h^{2}(t) h^{\prime}(t)
$$

$$
\begin{array}{ll}
\text { subs. } & V^{\prime}(t)=2 \\
h(t)=5
\end{array} \Rightarrow 2=\frac{9 \pi}{100} \cdot 5^{2} h^{\prime}(t) \Rightarrow 2=\frac{9 \pi}{4} h^{\prime}(t)
$$

$$
\Rightarrow h^{\prime}(t)=\frac{8}{9 \pi} \approx 0.2829 \mathrm{~cm} / \mathrm{sec} .
$$

Problem 4. Each side of a square is increasing at a rate of $6 \mathrm{~cm} / \mathrm{s}$. At what rate is the area of the square increasing when the area of the square is $16 \mathrm{~cm}^{2}$?

$$
\begin{aligned}
& x(t) \\
& \begin{aligned}
& x(t)= \text { side length of square } \\
& \text { at } t \text { sec. }
\end{aligned} \\
& A(t)=\text { area of square at } t \mathrm{sec} \text {. } \\
& \text { GIVEN: } \quad x^{\prime}(t)=6 \mathrm{~cm} / \mathrm{s} \\
& \text { GOAL: Find } A^{\prime}(t) \text { when } A(t)=16 \mathrm{~cm}^{2} \text {. } \\
& \text { RELATING: } \quad A(t)=x^{2}(t) \text { (area of square) } \\
& A^{\prime}(t)=2 x(t) \cdot x^{\prime}(t) \\
& \text { when } A=16 \\
& \Rightarrow x^{2}=16 \\
& =2(4)(6) \\
& \Rightarrow x=4 \\
& =48 \mathrm{~cm}^{2} / \mathrm{s}
\end{aligned}
$$

Problem 5. A street light is mounted at the top of a 15 -feet-tall pole. A man 6 feet tall walks away from the pole with a speed of 5 feet per second along a straight path. How fast is the tip of his shadow moving when he is 40 feet from the pole?

RELATING.

$$
\begin{aligned}
y(t) & =\frac{2}{3} x(t) \\
\Rightarrow y^{\prime}(t) & =\frac{2}{3} x^{\prime}(t)=\frac{2}{3}(5)=\frac{10}{3} \mathrm{ft} / \mathrm{sec} .
\end{aligned}
$$

Then

$$
\frac{d}{d t}(x(t)+y(t))=5+\frac{10}{3}=\frac{25}{3} \approx 8.33 \mathrm{ft} / \mathrm{sec} .
$$

NOTE: We actually did not need to use that $x(t)=40 \mathrm{ft}$. Why? It turns out that $x(t)+y(t)$ is constant regardless of the man's distance from the pole.

Section 4.1: Maximum \& Minimum Values

Problem 6.

(a) Sketch the graph of a function that has a local maximum at 2 and is continuous, but not differentiable at 2.
(b) Sketch the graph of a function that has a local maximum at 2 and is not continuous at 2 .
(c) Sketch the graph of a function on $[0,4]$ that has an absolute maximum, no local maximum, and no absolute minimum.
(a)

(b)

(c)

Problem 7. Find the critical numbers of the function.
(a) $f(x)=\frac{x^{2}+2}{2 x-1}$
(b) $F(x)=x^{4 / 5}(x-4)^{2}$
(c) $g(x)=x e^{x}$
(a) We have

$$
f^{\prime}(x)=\frac{2 x(2 x-1)-\left(x^{2}+2\right)(2)}{(2 x-1)^{2}}=\frac{4 x^{2}-2 x-2 x^{2}-4}{(2 x-1)^{2}}=\frac{2 x^{2}-2 x-4}{(2 x-1)^{2}}=\frac{2(x-2)(x+1)}{(2 x-1)^{2}}
$$

Note that $f^{\prime}(x)=0$ when $x=-1,2$ and that $f^{\prime}(x)$ does not exist when $x=1 / 2$. However, since $1 / 2$ is not in the domain of f, then it cannot be a critical number. Then the only critical numbers of f are -1 and 2.
(b)

$$
\begin{aligned}
& F(x)=x^{4 / 5}(x-4)^{2} \Rightarrow \\
& \begin{aligned}
F^{\prime}(x) & =x^{4 / 5} \cdot 2(x-4)+(x-4)^{2} \cdot \frac{4}{5} x^{-1 / 5}=\frac{1}{5} x^{-1 / 5}(x-4)[5 \cdot x \cdot 2+(x-4) \cdot 4] \\
& =\frac{(x-4)(14 x-16)}{5 x^{1 / 5}}=\frac{2(x-4)(7 x-8)}{5 x^{1 / 5}} \\
F^{\prime}(x) & =0 \Rightarrow x=4, \frac{8}{7} \cdot F^{\prime}(0) \text { does not exist. Thus, the three critical numbers are } 0, \frac{8}{7}, \text { and } 4 .
\end{aligned}
\end{aligned}
$$

(c) We have

$$
g^{\prime}(x)=1 \cdot e^{x}+x e^{x}=e^{x}(1+x)
$$

Note that since $e^{x}>0$, then $g^{\prime}(x)=0$ only when $x=-1$. Since -1 is in $\operatorname{dom}(g)$, it is a critical value.

Problem 8. Find the absolute maximum and the absolute minimum value(s) of the function

$$
f(\theta)=1+\cos ^{2}(\theta)
$$

in the interval $[\pi / 4, \pi]$.

We have

$$
f^{\prime}(\theta)=-2 \cos (\theta) \sin (\theta) .
$$

Let us find the critical numbers of f. Since the domains of $\cos (\theta)$ and $\sin (\theta)$ are $(-\infty, \infty)$, then $\operatorname{dom}\left(f^{\prime}\right)=$ $(-\infty, \infty)$, meaning that f^{\prime} is defined everywhere. We solve $-2 \cos (\theta) \sin (\theta)=0$. We have

$$
\cos (\theta)=0 \quad \text { OR } \quad \sin (\theta)=0
$$

In the interval $[\pi / 4, \pi], \cos (\theta)=0$ when $\theta=\pi / 2$ and $\sin (\theta)=0$ when $\theta=\pi$. Then $\pi / 2$ and π are the only critical numbers of f. Evaluating f at its critical numbers and its endpoints, we have

$$
\begin{gathered}
f(\pi / 4)=1+\cos ^{2}(\pi / 4)=1+\left(\frac{\sqrt{2}}{2}\right)^{2}=1+2 / 4=3 / 2 \\
f(\pi / 2)=1+\cos ^{2}(\pi / 2)=1+(0)^{2}=1+0=1 \\
f(\pi)=1+\cos ^{2}(\pi)=1+(-1)^{2}=1+1=2
\end{gathered}
$$

Therefore, the absolute maximum value is 2 and the absolute minimum value is 1 .

