MAT 1500 (Dr. Fuentes) Worksheet 8 - Sections 3.9 & 4.1

Section 3.9: Related Rates

Problem 1. A ladder 10 feet long rests against a vertical wall. If the bottom of the ladder slides away
from the wall at a rate of 4 feet per second, how fast is the angle between the ladder and the ground

changing when the bottom of the ladder is 6 feet from the wall?
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Problem 2. Air is being pumped into a spherical balloon so that its volume increases at a rate of 100
cm?®/s. How fast is the radius of the baloon increasing when the diameter is 50 cm?
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Problem 3. A paper cup has the shape of a cone with height 10 cm and radius 3 cm (at the top). If
water is poured into the cup at a rate of 2 cm? /s, how fast is the water level rising when the water is 5

cm deep?
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Problem 4. Each side of a square is increasing at a rate of 6 cm/s. At what rate is the area of the square

increasing when the area of the square is 16 cm? ?
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Problem 5. A street light is mounted at the top of a 15-feet-tall pole. A man 6 feet tall walks away
from the pole with a speed of 5 feet per second along a straight path. How fast is the tip of his shadow
moving when he is 40 feet from the pole?
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Section 4.1: Maximum & Minimum Values

Problem 6.

(a) Sketch the graph of a function that has a local maximum at 2 and is continuous, but not differen-
tiable at 2.

(b) Sketch the graph of a function that has a local maximum at 2 and is not continuous at 2.

(c) Sketch the graph of a function on [0, 4] that has an absolute maximum, no local maximum, and no
absolute minimum.

(a)

(b)

(©)




Problem 7. Find the critical numbers of the function.

2
@ f)=53"2 (b) F(x) = x¥/5(x — 4)? (©) g(x) = xe*

(a) We have
F(x) = 2x(2x —1) — (x> +2)(2) 4> —2x—2x* -4  2x*—2x—4  2(x—2)(x+1)
B (2x —1)2 N (2x —1)2 o (2x—=1)2  (2x—1)2
Note that f'(x) = 0 when x = —1,2 and that f’(x) does not exist when x = 1/2. However, since 1/2 is

not in the domain of f, then it cannot be a critical number. Then the only critical numbers of f are —1
and 2.

(b)
_Ff?.} s I4/5{1’ _— _I_]Z =i,

Fliz) =z*% 2z —4)+ (z—4)? - 42V =1z V5(z - 4)[5-2-2+ (z — 4) - 4]

__z—4){14z —18) 2z —4)(7x —8)

5x1/5 Hal/®
iy —0 = -4 % F'(0) does not exist. Thus. the three critical numbers are 0. %. and 4.
(c) We have
¢(x)=1-¢" +xe* =¢e*(1+x).
Note that since e* > 0, then ¢’(x) = 0 only when x = —1. Since —1 is in dom(g), it is a critical value.

Problem 8. Find the absolute maximum and the absolute minimum value(s) of the function

£(8) =1+ cos?(6)

in the interval [7t/4, 7.

We have
f(8) = —2 cos(8) sin(0).
Let us find the critical numbers of f. Since the domains of cos(6) and sin(6) are (—oo, c0), then dom(f’) =
(—o0,0), meaning that f’ is defined everywhere. We solve —2 cos () sin(8) = 0. We have
cos() =0 OR sin(6) = 0.

In the interval [rt/4, 7t], cos(6) = 0 when 8 = 71/2 and sin() = 0 when 0 = 7. Then 77/2 and 7 are the
only critical numbers of f. Evaluating f at its critical numbers and its endpoints, we have

V2

f(rt/4) =1+ cos’(mt/4) =1+ ( -

2
) =1+2/4=3/2,

f(m/2) =14 cos?(m/2) =1+ (0> =1+0=1,
f(mr)=1+cos?(m) =1+ (-1)*=1+1=2.

Therefore, the absolute maximum value is 2 and the absolute minimum value is 1.




