Problem 1. Consider the function

$$
f(x)=\frac{2 x^{2}}{x^{2}-1} .
$$

(a) Find the domain of f.

$$
\operatorname{dom}(f)=\{x \mid x \neq \pm 1\}=(-\infty,-1) \cup(-1,1) \cup(1, \infty)
$$

(b) Find the x and y-intercepts of f.

The x and y intercepts are both 0 , meaning that $(0,0)$ is a point on the graph.
(c) Find the vertical and the horizontal asymptotes of f.

Since $x= \pm 1$ causes f to be of the form $2 / 0$, then $x=-1$ and $x=1$ are both vertical asymptotes of f.
To find the horizontal asymptotes, we determine $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$. We have

$$
\lim _{x \rightarrow \infty} \frac{2 x^{2}}{x^{2}-1}=\lim _{x \rightarrow \infty} \frac{2 x^{2}}{x^{2}}=\lim _{x \rightarrow \infty} 2=2 .
$$

Similarly, $\lim _{x \rightarrow-\infty} \frac{2 x^{2}}{x^{2}-1}=2$. Then $y=2$ is the only horizontal asymptote of f.
(d) Find the intervals over which f is increasing and the intervals over which f is decreasing. Use the domain and the critical numbers of f to help you find which intervals to consider.
$f^{\prime}(x)=\frac{-4 x}{\left(x^{2}-1\right)^{2}}$
Since $f^{\prime}(x)=0$ when $x=0$, then 0 is a critical number of f. Note that $x= \pm 1$ are not critical numbers, since they are not in the domain of f, BUT we do need to consider the behavior of f before and after -1 and 1 .

Note that the denominator of the derivative is always positive. Therefore, we only need to determine the sign of the numerator.

	$(-\infty,-1)$	$(-1,0)$	$(0,1)$	$(1, \infty)$
$\frac{-4 x}{+}$	$\frac{-\cdot-}{+}=+$	$\frac{-\cdot-}{+}=+$	$\frac{-\cdot+}{+}=-$	$\frac{-\cdot+}{+}=-$

Therefore, f is increasing on $(-\infty,-1)$ and $(-1,0)$ and is decreasing on $(0,1)$ and $(1, \infty)$.
(e) Find the points at which f has a local maximum or a local minimum.

Since 0 is a critical number of f and its derivative changes from positive to negative at 0 , then $f(0)=$ 0 is a local maximum value of f.
(f) Find the inflection points of f (not just the x-values, but the y-coordinates as well).
$f^{\prime \prime}(x)=\frac{4\left(3 x^{2}+1\right)}{\left(x^{2}-1\right)^{3}}$
To find the inflection points, we solve $f^{\prime \prime}(x)=0$. This gives us $3 x^{2}+1=0$, or equivalently, $x^{2}=-1 / 3$, which is impossible. This means that f does not have any inflection points.
(g) Find the intervals over which f is concave up and the intervals over which f is concave down.

Since ± 1 are values that are not in the domain of f, we need to determine the concavity of f before and after these values.

Note that the numerator of the second derivative is always positive.

	$(-\infty,-1)$	$(-1,1)$	$(1, \infty)$
$\frac{+}{\left(x^{2}-1\right)^{3}}$	$\pm=+$	$\pm=-$	$\pm=-$

Therefore, f is concave up on on $(-\infty,-1)$ and $(1, \infty)$ and is concave down on $(-1,1)$.
(h) Use all of the information from the previous parts to sketch a graph of f. Please label the intercepts, the horizontal asymptote, the local max/min points, and the inflection points on your graph.

Problem 2. Consider the function

$$
f(x)=\frac{x^{2}}{\sqrt{x+1}}
$$

(a) Find the domain of f.

$$
\operatorname{dom}(f)=\{x \mid x+1>0\}=\{x \mid x>-1\}=(-1, \infty)
$$

(b) Find the x and y-intercepts of f.

The x and y intercepts are both 0 , meaning that $(0,0)$ is a point on the graph.
(c) Find the vertical and the horizontal asymptotes of f.

Since $x=-1$ causes f to be of the form $1 / 0$, then $x=-1$ is the vertical asymptote of f.
To find the horizontal asymptotes, we determine $\lim _{x \rightarrow \infty} f(x)$ (note that since x cannot be smaller than -1 , we do not need to determine $\lim _{x \rightarrow-\infty} f(x)$). We have

$$
\lim _{x \rightarrow \infty} \frac{x^{2}}{\sqrt{x+1}}=\lim _{x \rightarrow \infty} \frac{x^{2}}{x^{1 / 2}}=\infty
$$

Then f has no horizontal asymptotes.
(d) Find the intervals over which f is increasing and the intervals over which f is decreasing. Use the domain and the critical numbers of f to help you find which intervals to consider.
$f^{\prime}(x)=\frac{x(3 x+4)}{2(x+1)^{3 / 2}}$
Since $f^{\prime}(x)=0$ when $x=0,-4 / 3$, then 0 is a critical number of $f(-4 / 3$ is not in the domain of $f)$. Note that $x=-1$ is not a critical number, since it is not in the domain of f.

Note that the denominator of the derivative is always positive, since $x>-1$. Therefore, we only need to determine the sign of the numerator.

Therefore, f is increasing on $(0, \infty)$ is decreasing on $(-1,0)$.
(e) Find the points at which f has a local maximum or a local minimum.

Since 0 is a critical number of f and its derivative changes from negative to positive at 0 , then $f(0)=$ 0 is a local minimum value of f.
(f) Find the inflection points of f (not just the x-values, but the y-coordinates as well).
$f^{\prime \prime}(x)=\frac{3 x^{2}+8 x+8}{4(x+1)^{5 / 2}}$
To find the inflection points, we solve $f^{\prime \prime}(x)=0$. This gives us $3 x^{2}+8 x+8=0$, or equivalently, $3 x^{2}=-8 x+8$, which is impossible, since $-8 x+8<-8(-1)+8=0$ (remember, the domain of f requires $x>-1$). Therefore, f has no inflection points.
(g) Find the intervals over which f is concave up and the intervals over which f is concave down.

Notice that since $x>-1$, the denominator of the second derivative is always positive. For the same reason, the numerator is also always positive, since $3 x^{2}+8 x+8>3 x^{2}+8(-1)+8 \geq 0$. Therefore, $f^{\prime \prime}(x)>0$ for all $x>-1$, meaning that f is always concave upward (on $(-1, \infty)$).
(h) Use all of the information from the previous parts to sketch a graph of f. Please label the intercepts, the horizontal asymptote, the local max/min points, and the inflection points on your graph.

Problem 3. Consider the function

$$
f(x)=\ln \left(4-x^{2}\right) .
$$

Domain The domain is

$$
\left\{x \mid 4-x^{2}>0\right\}=\left\{x \mid x^{2}<4\right\}=\{x| | x \mid<2\}=(-2,2)
$$

Intercepts The y-intercept is $f(0)=\ln 4$. To find the x-intercept we set

$$
y=\ln \left(4-x^{2}\right)=0
$$

We know that $\ln 1=0$, so we have $4-x^{2}=1 \Rightarrow x^{2}=3$ and therefore the x-intercepts are $\pm \sqrt{3}$.

Asymptotes We look for vertical asymptotes at the endpoints of the domain. Since $4-x^{2} \rightarrow 0^{+}$as $x \rightarrow 2^{-}$and also as $x \rightarrow-2^{+}$, we have

$$
\lim _{x \rightarrow 2^{-}} \ln \left(4-x^{2}\right)=-\infty \quad \lim _{x \rightarrow-2^{+}} \ln \left(4-x^{2}\right)=-\infty
$$

Thus the lines $x=2$ and $x=-2$ are vertical asymptotes.

Intervals of Increase or Decrease

$$
f^{\prime}(x)=\frac{-2 x}{4-x^{2}}
$$

Since $f^{\prime}(x)>0$ when $-2<x<0$ and $f^{\prime}(x)<0$ when $0<x<2, f$ is increasing on $(-2,0)$ and decreasing on $(0,2)$.
Local Maximum or Minimum Values The only critical number is $x=0$. Since f^{\prime} changes from positive to negative at $0, f(0)=\ln 4$ is a local maximum by the First Derivative Test.

Concavity and Points of Inflection

$$
f^{\prime \prime}(x)=\frac{\left(4-x^{2}\right)(-2)+2 x(-2 x)}{\left(4-x^{2}\right)^{2}}=\frac{-8-2 x^{2}}{\left(4-x^{2}\right)^{2}}
$$

Since $f^{\prime \prime}(x)<0$ for all x, the curve is concave downward on $(-2,2)$ and has no inflection point.

