
MAT 2500 (Dr. Fuentes) Worksheet 4 - Section 13.1

Problem 1. Use traces to sketch and identify the surface.

(a)
x2

22 +
y2

22 +
z2

42 = 1 (b) z2 − 4x2 − y2 = 4 (c) x = y2 − z2

(a) The trace of the surface with the plane x = 0 is

y2

22 +
z2

42 = 1,

which is an ellipse with horizontal radius 2 and vertical radius 4 on the yz-plane, as shown
below.

The trace of the surface with the plane y = 0 is

x2

22 +
z2

42 = 1,

which is an ellipse with horizontal radius 2 and vertical radius 4 on the xz-plane, as shown
below.

The trace of the surface with the plane z = 0 is

x2

22 +
y2

22 = 1,
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which is a circle of radius 2 on the xy-plane, as shown below.

Combining all three trace curves, we obtain the “skeleton” of the surface, shown below. The
surface must be B.

(b) The trace of the surface with the plane x = 0 is

z2 − y2 = 4 ⇔ z2

22 − y2

22 = 1,

which is the hyperbola on the yz-plane shown below.

The trace of the surface with the plane y = 0 is

z2 − 4x2 = 4 ⇔ z2

22 − x2

12 = 1,

which is the hyperbola on the xz-plane shown below.

The trace of the surface with the planes z = ±
√

5 is

5 − 4x2 − y2 = 4 ⇔ x2

(1/2)2 +
y2

12 = 1,

which is an ellipse with horizontal radius 1/2 and vertical radius 1 on the the plane z = ±
√

5,
as shown below.
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Combining all three trace curves, we obtain the “skeleton” of the surface, shown below. The
surface must be A.

(c) The trace of the surface with the plane x = 1 is

1 = y2 − z2

which is a hyperbola on the plane x = 1 as shown below.

The trace of the surface with the plane y = 0 is

x = −z2

which is a sideways parabola on the xz-plane as shown below.

The trace of the surface with the plane z = 0 is

x = y2

which is a sideways parabola on the xy-plane as shown below.
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Combining all three trace curves, we obtain the “skeleton” of the surface, shown below. The
surface must be C.

Section 13.1: Vector Functions & Space Curves

Problem 2. Find the domain of the vector function

r(t) =
〈

ln(t + 1),
t√

9 − t2
, 2t〉.

The component functions of r are

f (t) = ln(t + 1), g(t) =
t√

9 − t2
, and h(t) = 2t.

We will find the domains of each of f , g, and h.

For the component function f , we have

dom( f ) = {t | t + 1 > 0} = {t | t > −1} = (−1, ∞).

For the component function g, we have

dom(g) =
{

t | 9 − t2 > 0
}
=

{
t | 9 > t2} = {t | 3 > |t|} = {t | − 3 < t < 3} = (−3, 3).

Since h(t) = 2t is an exponential function, its domain is

dom(h) = R = (−∞, ∞).

Since dom(r) is the intersection of dom( f ), dom(g), and dom(h), we have

dom(r) = (−1, 3).

Problem 3. Let

r(t) = te−ti +
t3 + t

2t3 − 1
j +

t
|t|k.

(a) Find lim
t→∞

r(t). (b) Determine if r(t) continuous at t = 0.

(a) The component functions of r are

f (t) = te−t, g(t) =
t3 + t

2t3 − 1
, and h(t) =

t
|t| .

We will take the limit as t → ∞ of each of f , g, and h.
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Since te−t =
t
et and et → ∞ as t → ∞, we have ∞

∞ form. Then by L’Hopital’s Rule we have

lim
t→∞

f (t) = lim
t→∞

t
et = lim

t→∞

1
et = 0.

Since t3 + t and 2t3 − 1 are both polynomial expressions of degree 3, we have

lim
t→∞

g(t) = lim
t→∞

t3 + t
2t3 − 1

= lim
t→∞

t3

2t3 =
1
2

.

Note that another to obtain limt→∞ g(t) is to apply L’Hopital’s Rule repeatedly.

Finally, since t → ∞, then t > 0, so |t| = t. Then we have

lim
t→∞

h(t) = lim
t→∞

t
|t| = lim

t→∞

t
t
= 1.

Therefore, lim
t→∞

r(t) =
〈
0, 1/2, 1

〉
.

(b) Since h(0) = 0/0 is undefined, the function is not continuous at 0.

Problem 4. Consider the following vector functions.

(i) r(t) =
〈
3, t, 2 − t2〉 (ii) r(t) = 2ti + 2 cos(t)j + 3 sin(t)k

For each one
(a) determine its space curve by hand and use an arrow to indicate the direction in which t increases.
(b) verify that your sketch is correct using the spacecurve( ) command in Maple.

(i) The parametric equations of r(t) =
〈
3, t, 2 − t2〉 are

x = 3, y = t, and z = 2 − t2.

Since x = 3, the space curve of r lies on the vertical plane x = 3. Note that

z = 2 − y2 = −y2 + 2.

Then the space curve consists of a downward parabola shifted up 2 units that lies on the x = 3 plane.
It suffices to find two points on the curve to determine the direction of the space curve. When t = 0

we have the point (3, 0, 2), and when t = 1 we have the point (3, 1, 1).
The Maple command to obtain a plot of the space curve is shown below.
(ii) The parametric equations of r(t) = 2ti + 2 cos(t)j + 3 sin(t)k are

x = 2t, y = 2 cos(t), and z = 3 sin(t).

Note that (y
2

)2
+

( z
3

)2
= cos2(t) + sin2(t) = 1.

Then y2/22 + z2/32 = 1, which is the equation of an elliptic cylinder with horizontal radius 2, vertical
radius 3, and with axis the x-axis. This means that the space curve of r lies on the surface of this elliptic
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cylinder.

By plotting some points for several increasing values of t, we can determine the space curve and its
direction. When t = 0, we have the point (0, 2, 0), when t = π/2, we have the point (π.0, 3), when
t = π, we have the point (2π,−2, 0), and when t = 3π/2, we have the point (3π, 0,−3). Plotting these
points along the surface of the cylinder, we see that the space curve is the helix shown below.

The Maple command to obtain a plot of the space curve is shown below.
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Problem 5. Let r(t) = (t + 1)i + tj + (2 cos(t + 1))k.
(a) Determine and draw the projections of the space curve of r onto the three coordinate planes by
hand.
(b) Draw a rough sketch of the space curve of r by hand.
(c) Verify your answers in (a) and (b) using the plot( ) and spacecurve( ) commands in Maple.

**PROBLEM 5 HAS BEEN OMITTED.**

Problem 6.
(a) Find a vector function that represents the curve of intersection of the cylinder x2 + y2 = 1 and the
plane y + z = 2.
HINT: cos2(x) + sin2(x) = 1.

(b) Plot the cylinder x2 + y2 = 1 and the plane y + z = 2 in Maple on the same plot using the
implicitplot3d( ) and the display( ) commands. Give each surface a distinct color.

(c) Use Maple to plot the intersection of the cylinder and the plane using the intersectplot( ) command.

(d) Use Maple to verify that the space curve of the vector function you defined in (a) matches your
plot in (c). Be sure to set the ranges for x, y, and z the same as for the plot in (d).

First of all, note that the intersection of the circular cylinder and the diagonal plane y + z = 2 would be
an ellipse (think of the cross-section you would obtain if you sliced the cylinder on a diagonal). We must
determine the parametric equations of the vector function r that satisy both of the equations x2 + y2 = 1
and y + z = 2 in order to obtain a space curve that is precisely the curve of intersection of the circular
cylinder and the plane. If we choose x = cos(t) and y = sin(t), then

x2 + y2 = cos2(t) + sin2(t) = 1,

and so the equation of the cylinder is satisfied. The y and z parametric equations must satisfy y + z = 2,
or equivalently, z = 2 − y. Since y = sin(t), then we must have

z = 2 − sin(t).

Note that in order to avoid infinitely many rotations around the ellipse (the curve of intersection), we
need to restrict t to obtain one rotation. We can choose, for example, 0 ≤ t ≤ 2π. Then a vector function
that represents the curve of intersection is

r(t) = (cos(t))i + (sin(t))j + (2 − sin(t))k, 0 ≤ t ≤ 2π.
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Problem 7. Repeat parts (a)-(d) in Problem 5 for the intersection of the paraboloid z = 4x2 + y2 and
the parabolic cilinder y = x2.
HINT: As the first parametric equation of the curve of intersection, let x = t.

We must determine the parametric equations of the vector function r that satisy both of the equations
z = 4x2 + y2 and y = x2 in order to obtain a space curve that is precisely the curve of intersection of the
paraboloid and the parabolic cilinder. If we choose x = t, then y = t2, and then z = 4t2 +(t2)2 = 4t2 + t4.
Then vector function for the curve of intersection is

r(t) = ti + t2j + (4t2 + t4)k.
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