Section 2.2: The Limit of a Function

Problem 1. Use Maple to estimate the value of

$$\lim_{t \to 1} \frac{\sqrt{(t-1)^2 + 9} - 3}{(t-1)^2}.$$

$$\begin{array}{l} \begin{tabular}{l} \begi$$

PART (b)

We suspect that the limit of f(t) as t approaches 1 from the RIGHT is roughly 0.167.

We suspect that the limit of f(t) as t approaches 1 from the LEFT is roughly 0.167.

PART (c)

We suspect that the limit of f(t) as t approaches 1 is roughly 0.167.

PART (e)

0.

0.

0.

0.

PART (d)

The answers in parts (b) and (c) are indeed correct. We can see in the graph below that as t approaches

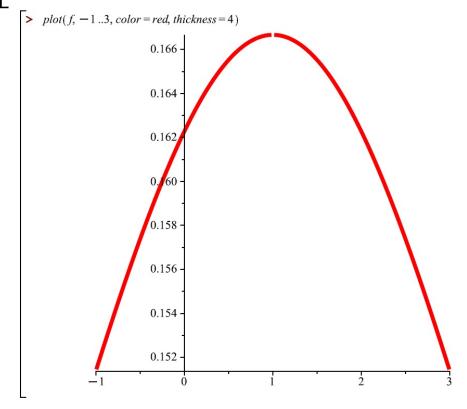
1 from either side, f(t) approaches 1/6=0.1666666666...

We obtained "strange" answers in Part (d) due to a rounding error by Maple.

The closer that the value of t gets to 1, the closer the value of

 $\sqrt{(t-1)^2+9}$ gets to 3, which means that $\sqrt{(t-1)^2+9}-3$ gets closer to 0. Maple can incorrectly round this value to be 0.

Beware! Sometimes, calculators can give false values.



Problem 2. Use Maple to investigate $\lim_{x\to 0} \sin\left(\frac{\pi}{x}\right)$.

PART (a) > $g := x \rightarrow \sin\left(\frac{\text{Pi}}{x}\right)$ $g := x \mapsto \sin\left(\frac{\pi}{x}\right)$

$$\begin{bmatrix} s(100) \\ s(1) \end{bmatrix}$$

Based on our answers, we suspect the limit of g(x) is 0 as x approaches 0.

PART (b) 1 -1

1

1

$$\Rightarrow g\left(-\frac{2}{5}\right)$$

-1

$$> g\left(-\frac{2}{7}\right)$$

1

$$> g\left(-\frac{2}{45}\right)$$

-1

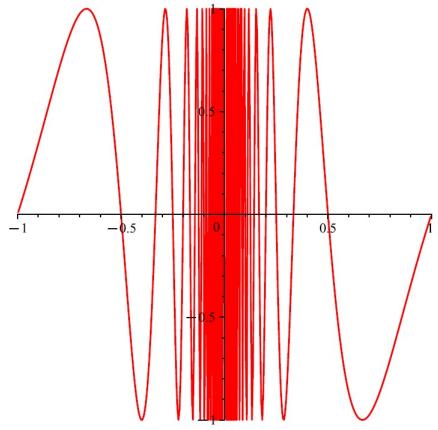
$$\Rightarrow g\left(-\frac{2}{101}\right)$$

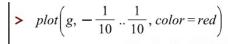
Based on our answers, we suspect the limit of g(x) DOES NOT EXIST x approaches 0. PART (c)

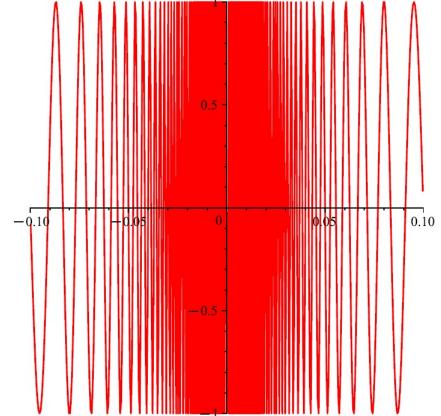
We suspect the limit of g(x) DOES NOT EXIST x approaches 0.

Lets graph the function to see how it is behaving near x=0.

 $\rightarrow plot(g, -1..1, color = red)$







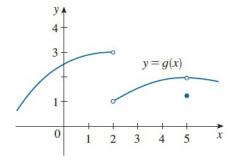
The reason that the limit DNE is because the graph of g oscillates between the values -1 and 1 on the y-axis infinitely many times, meaning that g does not approach a specific value as x approaches 0.

Problem 3. Consider the graph of the function y = g(x) shown below. Determine the following limits.

- (a) $\lim_{x \to 2^{-}} g(x)$
- (b) $\lim_{x\to 2^+} g(x)$
- (c) $\lim_{x\to 2} g(x)$

- (d) $\lim_{x\to 5^-} g(x)$
- (e) $\lim_{x \to 5^+} g(x)$
- (f) $\lim_{x\to 5} g(x)$

- $(g) \lim_{x \to 0^{-}} g(x)$
- $\text{(h)} \lim_{x \to 0^+} g(x)$
- (i) $\lim_{x\to 0} g(x)$



- (a) $\lim_{x \to 2^{-}} g(x) = 3$ (b) $\lim_{x \to 2^{+}} g(x) = 1$ (c) $\lim_{x \to 2} g(x)$ *DNE*
- (d) $\lim_{x \to 5^{-}} g(x) = 2$ (e) $\lim_{x \to 5^{+}} g(x) = 2$ (f) $\lim_{x \to 5} g(x) = 2$

- (g) $\lim_{x\to 0^{-}} g(x) = 2.5$ (h) $\lim_{x\to 0^{+}} g(x) = 2.5$ (i) $\lim_{x\to 0} g(x) = 2.5$