MAT 1500 (Dr. Fuentes) Worksheet 2 (PART 1) - Section 2.2

Section 2.2;: The Limit of a Function

Problem 1. Use Maple to estimate the value of
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(> £(1.5)
0.1655250600
[> f(1.1)
0.1666204000
(> £(1.01)
0.1666700000
[> 7(1.001)
0.1670000000
(> 7(0.5)
0.1655250600
[> £(0.9)
0.1666204000
(> £(0.99)
0.1666700000
[> 7(0.999)
0.1670000000
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PART (b)
We suspect that the limit of f(t) as t approaches 1 from the RIGHT is roughly 0.167.
| We suspect that the limit of f(t) as t approaches 1 from the LEFT is roughly 0.167.
PART (¢)
We suspect that the limit of f(t) as t approaches 1 is roughly 0.167.

[PART (e)
> f(1.00001)
0.
(> £(1.000001)
0.
> £(0.99999)
0.
[> £(0.999999)
0.
[ PART ()
The answers in parts (b) and (c) are indeed correct. We can see in the graph below that as t
approaches

1 from either side, f(t) approaches 1/6=0.1666666606...

We obtained "strange' answers in Part (d) due to a rounding error by Maple.
The closer that the value of t gets to 1, the closer the value of

J (t=1) + ets to 3, which means that t— +9 — ets closer to 0. Maple can
*+9 g 3, which h 1) +9 —3 gets cl 0. Mapl

incorrectly round this value to be 0.
Beware! Sometimes, calculators can give false values.

> plot( f, —1..3, color =red, thickness=4)
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Problem 2. Use Maple to investigate lim sin (g)
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:Based on our answers, we suspect the limit of g(x) is 0 as x approaches 0.
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;Based on our answers, we suspect the limit of g(x) DOES NOT EXIST x approaches 0.
| PART (c)

[ We suspect the limit of g(x) DOES NOT EXIST x approaches 0.

| Lets graph the function to see how it is behaving near x=0.

[> plot(g, —1..1, color =red)
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> p!ot(g, ~70 10" cofor=red}
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[ The reason that the limit DNE is because the graph of g oscillates between the values -1 and 1

on the y-axis infinitely many times, meaning that g does not approach a specific value as
| X approaches 0.

Problem 3. Consider the graph of the function y = g(x) shown below. Determine the following limits.
(@) lim g(x) (b) lim g(x) (c) lim g(x)
x—27 x—2+ x—2

(d) lim g(x) (e lim g(x) () limg(x)

(8) lim g(x)  (b) lim g(x) () limg(x)
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- () lim g(x)=25 (h) lim g(x)=25 (i) lim g(x)= 2.5




